Metamath Proof Explorer


Theorem chtlepsi

Description: The first Chebyshev function is less than the second. (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion chtlepsi AθAψA

Proof

Step Hyp Ref Expression
1 fzfid A1AFin
2 elfznn n1An
3 2 adantl An1An
4 vmacl nΛn
5 3 4 syl An1AΛn
6 vmage0 n0Λn
7 3 6 syl An1A0Λn
8 ppisval A0A=2A
9 inss1 2A2A
10 2eluzge1 21
11 fzss1 212A1A
12 10 11 mp1i A2A1A
13 9 12 sstrid A2A1A
14 8 13 eqsstrd A0A1A
15 1 5 7 14 fsumless An0AΛnn=1AΛn
16 chtval AθA=n0Alogn
17 simpr An0An0A
18 17 elin2d An0An
19 vmaprm nΛn=logn
20 18 19 syl An0AΛn=logn
21 20 sumeq2dv An0AΛn=n0Alogn
22 16 21 eqtr4d AθA=n0AΛn
23 chpval AψA=n=1AΛn
24 15 22 23 3brtr4d AθAψA