| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpcl |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ∈ ℝ ) |
| 3 |
|
chtcl |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) ∈ ℝ ) |
| 4 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) ∈ ℝ ) |
| 5 |
2 4
|
resubcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ψ ‘ 𝐴 ) − ( θ ‘ 𝐴 ) ) ∈ ℝ ) |
| 6 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
| 7 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 ∈ ℝ ) |
| 8 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℝ ) |
| 9 |
|
0lt1 |
⊢ 0 < 1 |
| 10 |
9
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 < 1 ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 1 ≤ 𝐴 ) |
| 12 |
7 8 6 10 11
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) |
| 13 |
6 12
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 14 |
13
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 ≤ 𝐴 ) |
| 15 |
6 14
|
resqrtcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 16 |
|
ppifi |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ∈ Fin ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ∈ Fin ) |
| 18 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝐴 ∈ ℝ+ ) |
| 19 |
18
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 20 |
17 19
|
fsumrecl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝐴 ) ∈ ℝ ) |
| 21 |
13
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 22 |
15 21
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 23 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 24 |
23
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 25 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 26 |
25
|
elin2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 27 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 29 |
28
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 30 |
29
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 31 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 32 |
28
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
| 33 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 34 |
26 33
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 35 |
|
eluz2gt1 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 < 𝑝 ) |
| 37 |
32 36
|
rplogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 38 |
31 37
|
rerpdivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 39 |
|
reflcl |
⊢ ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℝ ) |
| 40 |
38 39
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℝ ) |
| 41 |
30 40
|
remulcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ ℂ ) |
| 43 |
30
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 44 |
24 42 43
|
fsumsub |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) = ( Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 45 |
|
0le0 |
⊢ 0 ≤ 0 |
| 46 |
45
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 ≤ 0 ) |
| 47 |
8 6 6 14 11
|
lemul2ad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 𝐴 · 1 ) ≤ ( 𝐴 · 𝐴 ) ) |
| 48 |
6
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℂ ) |
| 49 |
48
|
sqsqrtd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 50 |
48
|
mulridd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 51 |
49 50
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · 1 ) ) |
| 52 |
48
|
sqvald |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 𝐴 ↑ 2 ) = ( 𝐴 · 𝐴 ) ) |
| 53 |
47 51 52
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐴 ↑ 2 ) ) |
| 54 |
6 14
|
sqrtge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 55 |
15 6 54 14
|
le2sqd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( √ ‘ 𝐴 ) ≤ 𝐴 ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) ≤ ( 𝐴 ↑ 2 ) ) ) |
| 56 |
53 55
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ≤ 𝐴 ) |
| 57 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ ( √ ‘ 𝐴 ) ≤ 𝐴 ) ) → ( 0 [,] ( √ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
| 58 |
7 6 46 56 57
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 0 [,] ( √ ‘ 𝐴 ) ) ⊆ ( 0 [,] 𝐴 ) ) |
| 59 |
58
|
ssrind |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 60 |
59
|
sselda |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 61 |
41 30
|
resubcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 62 |
61
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ∈ ℂ ) |
| 63 |
60 62
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ∈ ℂ ) |
| 64 |
|
eldifi |
⊢ ( 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 65 |
64 43
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 66 |
65
|
mullidd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 1 · ( log ‘ 𝑝 ) ) = ( log ‘ 𝑝 ) ) |
| 67 |
25
|
elin1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( 0 [,] 𝐴 ) ) |
| 68 |
|
0re |
⊢ 0 ∈ ℝ |
| 69 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ ) |
| 70 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 71 |
68 69 70
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 72 |
67 71
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) |
| 73 |
72
|
simp3d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ≤ 𝐴 ) |
| 74 |
64 73
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝑝 ≤ 𝐴 ) |
| 75 |
64 29
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝑝 ∈ ℝ+ ) |
| 76 |
13
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℝ+ ) |
| 77 |
75 76
|
logled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝑝 ≤ 𝐴 ↔ ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ) ) |
| 78 |
74 77
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ 𝑝 ) ≤ ( log ‘ 𝐴 ) ) |
| 79 |
66 78
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 1 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) |
| 80 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 1 ∈ ℝ ) |
| 81 |
21
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 82 |
64 37
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 83 |
80 81 82
|
lemuldivd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( 1 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ↔ 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 84 |
79 83
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) |
| 85 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℝ ) |
| 86 |
85
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝐴 ∈ ℂ ) |
| 87 |
86
|
sqsqrtd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) = 𝐴 ) |
| 88 |
|
eldifn |
⊢ ( 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ¬ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 89 |
88
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ¬ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 90 |
64 26
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝑝 ∈ ℙ ) |
| 91 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ℙ ) ) |
| 92 |
91
|
rbaib |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ) ) |
| 93 |
90 92
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ) ) |
| 94 |
|
0red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 0 ∈ ℝ ) |
| 95 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( √ ‘ 𝐴 ) ∈ ℝ ) |
| 96 |
64 28
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝑝 ∈ ℕ ) |
| 97 |
96
|
nnred |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝑝 ∈ ℝ ) |
| 98 |
75
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 0 ≤ 𝑝 ) |
| 99 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ ( √ ‘ 𝐴 ) ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) ) |
| 100 |
|
df-3an |
⊢ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) |
| 101 |
99 100
|
bitrdi |
⊢ ( ( 0 ∈ ℝ ∧ ( √ ‘ 𝐴 ) ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) ) |
| 102 |
101
|
baibd |
⊢ ( ( ( 0 ∈ ℝ ∧ ( √ ‘ 𝐴 ) ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ) → ( 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ↔ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) |
| 103 |
94 95 97 98 102
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝑝 ∈ ( 0 [,] ( √ ‘ 𝐴 ) ) ↔ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) |
| 104 |
93 103
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ↔ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) |
| 105 |
89 104
|
mtbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ¬ 𝑝 ≤ ( √ ‘ 𝐴 ) ) |
| 106 |
95 97
|
ltnled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( √ ‘ 𝐴 ) < 𝑝 ↔ ¬ 𝑝 ≤ ( √ ‘ 𝐴 ) ) ) |
| 107 |
105 106
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( √ ‘ 𝐴 ) < 𝑝 ) |
| 108 |
54
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 0 ≤ ( √ ‘ 𝐴 ) ) |
| 109 |
95 97 108 98
|
lt2sqd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( √ ‘ 𝐴 ) < 𝑝 ↔ ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( 𝑝 ↑ 2 ) ) ) |
| 110 |
107 109
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( √ ‘ 𝐴 ) ↑ 2 ) < ( 𝑝 ↑ 2 ) ) |
| 111 |
87 110
|
eqbrtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 𝐴 < ( 𝑝 ↑ 2 ) ) |
| 112 |
96
|
nnsqcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝑝 ↑ 2 ) ∈ ℕ ) |
| 113 |
112
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝑝 ↑ 2 ) ∈ ℝ+ ) |
| 114 |
|
logltb |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ ( 𝑝 ↑ 2 ) ∈ ℝ+ ) → ( 𝐴 < ( 𝑝 ↑ 2 ) ↔ ( log ‘ 𝐴 ) < ( log ‘ ( 𝑝 ↑ 2 ) ) ) ) |
| 115 |
76 113 114
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( 𝐴 < ( 𝑝 ↑ 2 ) ↔ ( log ‘ 𝐴 ) < ( log ‘ ( 𝑝 ↑ 2 ) ) ) ) |
| 116 |
111 115
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ 𝐴 ) < ( log ‘ ( 𝑝 ↑ 2 ) ) ) |
| 117 |
|
2z |
⊢ 2 ∈ ℤ |
| 118 |
|
relogexp |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( log ‘ ( 𝑝 ↑ 2 ) ) = ( 2 · ( log ‘ 𝑝 ) ) ) |
| 119 |
75 117 118
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ ( 𝑝 ↑ 2 ) ) = ( 2 · ( log ‘ 𝑝 ) ) ) |
| 120 |
116 119
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( log ‘ 𝐴 ) < ( 2 · ( log ‘ 𝑝 ) ) ) |
| 121 |
|
2re |
⊢ 2 ∈ ℝ |
| 122 |
121
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → 2 ∈ ℝ ) |
| 123 |
81 122 82
|
ltdivmul2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) < 2 ↔ ( log ‘ 𝐴 ) < ( 2 · ( log ‘ 𝑝 ) ) ) ) |
| 124 |
120 123
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) < 2 ) |
| 125 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 126 |
124 125
|
breqtrdi |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) < ( 1 + 1 ) ) |
| 127 |
64 38
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 128 |
|
1z |
⊢ 1 ∈ ℤ |
| 129 |
|
flbi |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 1 ∈ ℤ ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) = 1 ↔ ( 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∧ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) < ( 1 + 1 ) ) ) ) |
| 130 |
127 128 129
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) = 1 ↔ ( 1 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∧ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) < ( 1 + 1 ) ) ) ) |
| 131 |
84 126 130
|
mpbir2and |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) = 1 ) |
| 132 |
131
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = ( ( log ‘ 𝑝 ) · 1 ) ) |
| 133 |
65
|
mulridd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝑝 ) · 1 ) = ( log ‘ 𝑝 ) ) |
| 134 |
132 133
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = ( log ‘ 𝑝 ) ) |
| 135 |
134
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) = ( ( log ‘ 𝑝 ) − ( log ‘ 𝑝 ) ) ) |
| 136 |
65
|
subidd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( log ‘ 𝑝 ) − ( log ‘ 𝑝 ) ) = 0 ) |
| 137 |
135 136
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∖ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) = 0 ) |
| 138 |
59 63 137 24
|
fsumss |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ) |
| 139 |
|
chpval2 |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 141 |
|
chtval |
⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 142 |
141
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 143 |
140 142
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ψ ‘ 𝐴 ) − ( θ ‘ 𝐴 ) ) = ( Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) ) |
| 144 |
44 138 143
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ψ ‘ 𝐴 ) − ( θ ‘ 𝐴 ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ) |
| 145 |
60 61
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 146 |
60 41
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ ℝ ) |
| 147 |
60 37
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 148 |
147
|
rpge0d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 0 ≤ ( log ‘ 𝑝 ) ) |
| 149 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 150 |
149
|
elin2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 151 |
150 27
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 152 |
151
|
nnrpd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
| 153 |
152
|
relogcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 154 |
146 153
|
subge02d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( 0 ≤ ( log ‘ 𝑝 ) ↔ ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ≤ ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) |
| 155 |
148 154
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ≤ ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 156 |
60 38
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 157 |
|
flle |
⊢ ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) |
| 158 |
156 157
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) |
| 159 |
60 40
|
syldan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℝ ) |
| 160 |
159 19 147
|
lemuldiv2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ≤ ( log ‘ 𝐴 ) ↔ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 161 |
158 160
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ≤ ( log ‘ 𝐴 ) ) |
| 162 |
145 146 19 155 161
|
letrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) → ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) |
| 163 |
17 145 19 162
|
fsumle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) − ( log ‘ 𝑝 ) ) ≤ Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝐴 ) ) |
| 164 |
144 163
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ψ ‘ 𝐴 ) − ( θ ‘ 𝐴 ) ) ≤ Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝐴 ) ) |
| 165 |
21
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 166 |
|
fsumconst |
⊢ ( ( ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ∈ Fin ∧ ( log ‘ 𝐴 ) ∈ ℂ ) → Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝐴 ) = ( ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) · ( log ‘ 𝐴 ) ) ) |
| 167 |
17 165 166
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝐴 ) = ( ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) · ( log ‘ 𝐴 ) ) ) |
| 168 |
|
hashcl |
⊢ ( ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ∈ Fin → ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ∈ ℕ0 ) |
| 169 |
17 168
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ∈ ℕ0 ) |
| 170 |
169
|
nn0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ∈ ℝ ) |
| 171 |
|
logge0 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 ≤ ( log ‘ 𝐴 ) ) |
| 172 |
|
reflcl |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 173 |
15 172
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ∈ ℝ ) |
| 174 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∈ Fin ) |
| 175 |
|
ppisval |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∩ ℙ ) ) |
| 176 |
15 175
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∩ ℙ ) ) |
| 177 |
|
inss1 |
⊢ ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∩ ℙ ) ⊆ ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) |
| 178 |
|
2eluzge1 |
⊢ 2 ∈ ( ℤ≥ ‘ 1 ) |
| 179 |
|
fzss1 |
⊢ ( 2 ∈ ( ℤ≥ ‘ 1 ) → ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 180 |
178 179
|
mp1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 181 |
177 180
|
sstrid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 2 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∩ ℙ ) ⊆ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 182 |
176 181
|
eqsstrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 183 |
|
ssdomg |
⊢ ( ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∈ Fin → ( ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ≼ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 184 |
174 182 183
|
sylc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ≼ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) |
| 185 |
|
hashdom |
⊢ ( ( ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ∈ Fin ∧ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) ↔ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ≼ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 186 |
17 174 185
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) ↔ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ≼ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 187 |
184 186
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ≤ ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) ) |
| 188 |
|
flge0nn0 |
⊢ ( ( ( √ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝐴 ) ) → ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 189 |
15 54 188
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ0 ) |
| 190 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) |
| 191 |
189 190
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) ) = ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) |
| 192 |
187 191
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ≤ ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ) |
| 193 |
|
flle |
⊢ ( ( √ ‘ 𝐴 ) ∈ ℝ → ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ≤ ( √ ‘ 𝐴 ) ) |
| 194 |
15 193
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ ( √ ‘ 𝐴 ) ) ≤ ( √ ‘ 𝐴 ) ) |
| 195 |
170 173 15 192 194
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) ≤ ( √ ‘ 𝐴 ) ) |
| 196 |
170 15 21 171 195
|
lemul1ad |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ♯ ‘ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ) · ( log ‘ 𝐴 ) ) ≤ ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
| 197 |
167 196
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑝 ∈ ( ( 0 [,] ( √ ‘ 𝐴 ) ) ∩ ℙ ) ( log ‘ 𝐴 ) ≤ ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
| 198 |
5 20 22 164 197
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ψ ‘ 𝐴 ) − ( θ ‘ 𝐴 ) ) ≤ ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) |
| 199 |
2 4 22
|
lesubadd2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ( ψ ‘ 𝐴 ) − ( θ ‘ 𝐴 ) ) ≤ ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ↔ ( ψ ‘ 𝐴 ) ≤ ( ( θ ‘ 𝐴 ) + ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) ) ) |
| 200 |
198 199
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ψ ‘ 𝐴 ) ≤ ( ( θ ‘ 𝐴 ) + ( ( √ ‘ 𝐴 ) · ( log ‘ 𝐴 ) ) ) ) |