| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpval |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
| 2 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑝 ↑ 𝑘 ) → ( Λ ‘ 𝑛 ) = ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
| 3 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
| 4 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 6 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 7 |
5 6
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 9 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑛 ) = 0 ) ) → ( Λ ‘ 𝑛 ) = 0 ) |
| 10 |
2 3 8 9
|
fsumvma2 |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
| 12 |
11
|
elin2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 13 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 14 |
|
vmappw |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 15 |
12 13 14
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( log ‘ 𝑝 ) ) |
| 16 |
15
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) ) |
| 17 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ Fin ) |
| 18 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 19 |
|
eluzelre |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 𝑝 ∈ ℝ ) |
| 20 |
|
eluz2gt1 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) |
| 21 |
19 20
|
rplogcld |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 22 |
12 18 21
|
3syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 23 |
22
|
rpcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
| 24 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ Fin ∧ ( log ‘ 𝑝 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) · ( log ‘ 𝑝 ) ) ) |
| 25 |
17 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) · ( log ‘ 𝑝 ) ) ) |
| 26 |
|
ppisval |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) = ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ) |
| 27 |
|
inss1 |
⊢ ( ( 2 ... ( ⌊ ‘ 𝐴 ) ) ∩ ℙ ) ⊆ ( 2 ... ( ⌊ ‘ 𝐴 ) ) |
| 28 |
26 27
|
eqsstrdi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 29 |
28
|
sselda |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 30 |
|
elfzuz2 |
⊢ ( 𝑝 ∈ ( 2 ... ( ⌊ ‘ 𝐴 ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) |
| 32 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℝ ) |
| 33 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 0 ∈ ℝ ) |
| 34 |
|
2re |
⊢ 2 ∈ ℝ |
| 35 |
34
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 2 ∈ ℝ ) |
| 36 |
|
2pos |
⊢ 0 < 2 |
| 37 |
36
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 0 < 2 ) |
| 38 |
|
eluzle |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ ( ⌊ ‘ 𝐴 ) ) |
| 39 |
|
2z |
⊢ 2 ∈ ℤ |
| 40 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ 2 ∈ ℤ ) → ( 2 ≤ 𝐴 ↔ 2 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 41 |
39 40
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( 2 ≤ 𝐴 ↔ 2 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 42 |
38 41
|
imbitrrid |
⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) → 2 ≤ 𝐴 ) ) |
| 43 |
42
|
imp |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 2 ≤ 𝐴 ) |
| 44 |
33 35 32 37 43
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 0 < 𝐴 ) |
| 45 |
32 44
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 𝐴 ∈ ℝ+ ) |
| 46 |
31 45
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ+ ) |
| 47 |
46
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 48 |
47 22
|
rerpdivcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 49 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 1 ∈ ℝ ) |
| 50 |
|
1lt2 |
⊢ 1 < 2 |
| 51 |
50
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 2 ) |
| 52 |
49 35 32 51 43
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 2 ) ) → 1 < 𝐴 ) |
| 53 |
31 52
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 < 𝐴 ) |
| 54 |
|
rplogcl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 < 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
| 55 |
53 54
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
| 56 |
55 22
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ+ ) |
| 57 |
56
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) |
| 58 |
|
flge0nn0 |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ0 ) |
| 59 |
48 57 58
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ0 ) |
| 60 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) = ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) = ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 62 |
61
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) · ( log ‘ 𝑝 ) ) = ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) · ( log ‘ 𝑝 ) ) ) |
| 63 |
59
|
nn0cnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℂ ) |
| 64 |
63 23
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) · ( log ‘ 𝑝 ) ) = ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 65 |
25 62 64
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) = ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 66 |
16 65
|
eqtrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 67 |
66
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( Λ ‘ ( 𝑝 ↑ 𝑘 ) ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 68 |
1 10 67
|
3eqtrd |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |