| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chpval |
|- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
| 2 |
|
fveq2 |
|- ( n = ( p ^ k ) -> ( Lam ` n ) = ( Lam ` ( p ^ k ) ) ) |
| 3 |
|
id |
|- ( A e. RR -> A e. RR ) |
| 4 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` A ) ) -> n e. NN ) |
| 5 |
4
|
adantl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> n e. NN ) |
| 6 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
| 7 |
5 6
|
syl |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ( A e. RR /\ n e. ( 1 ... ( |_ ` A ) ) ) -> ( Lam ` n ) e. CC ) |
| 9 |
|
simprr |
|- ( ( A e. RR /\ ( n e. ( 1 ... ( |_ ` A ) ) /\ ( Lam ` n ) = 0 ) ) -> ( Lam ` n ) = 0 ) |
| 10 |
2 3 8 9
|
fsumvma2 |
|- ( A e. RR -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( Lam ` ( p ^ k ) ) ) |
| 11 |
|
simpr |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ( 0 [,] A ) i^i Prime ) ) |
| 12 |
11
|
elin2d |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. Prime ) |
| 13 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) -> k e. NN ) |
| 14 |
|
vmappw |
|- ( ( p e. Prime /\ k e. NN ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 15 |
12 13 14
|
syl2an |
|- ( ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) /\ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) -> ( Lam ` ( p ^ k ) ) = ( log ` p ) ) |
| 16 |
15
|
sumeq2dv |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( Lam ` ( p ^ k ) ) = sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( log ` p ) ) |
| 17 |
|
fzfid |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) e. Fin ) |
| 18 |
|
prmuz2 |
|- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
| 19 |
|
eluzelre |
|- ( p e. ( ZZ>= ` 2 ) -> p e. RR ) |
| 20 |
|
eluz2gt1 |
|- ( p e. ( ZZ>= ` 2 ) -> 1 < p ) |
| 21 |
19 20
|
rplogcld |
|- ( p e. ( ZZ>= ` 2 ) -> ( log ` p ) e. RR+ ) |
| 22 |
12 18 21
|
3syl |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR+ ) |
| 23 |
22
|
rpcnd |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. CC ) |
| 24 |
|
fsumconst |
|- ( ( ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) e. Fin /\ ( log ` p ) e. CC ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( log ` p ) = ( ( # ` ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) x. ( log ` p ) ) ) |
| 25 |
17 23 24
|
syl2anc |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( log ` p ) = ( ( # ` ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) x. ( log ` p ) ) ) |
| 26 |
|
ppisval |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) = ( ( 2 ... ( |_ ` A ) ) i^i Prime ) ) |
| 27 |
|
inss1 |
|- ( ( 2 ... ( |_ ` A ) ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) ) |
| 28 |
26 27
|
eqsstrdi |
|- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) C_ ( 2 ... ( |_ ` A ) ) ) |
| 29 |
28
|
sselda |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( 2 ... ( |_ ` A ) ) ) |
| 30 |
|
elfzuz2 |
|- ( p e. ( 2 ... ( |_ ` A ) ) -> ( |_ ` A ) e. ( ZZ>= ` 2 ) ) |
| 31 |
29 30
|
syl |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` A ) e. ( ZZ>= ` 2 ) ) |
| 32 |
|
simpl |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> A e. RR ) |
| 33 |
|
0red |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 0 e. RR ) |
| 34 |
|
2re |
|- 2 e. RR |
| 35 |
34
|
a1i |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 2 e. RR ) |
| 36 |
|
2pos |
|- 0 < 2 |
| 37 |
36
|
a1i |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 0 < 2 ) |
| 38 |
|
eluzle |
|- ( ( |_ ` A ) e. ( ZZ>= ` 2 ) -> 2 <_ ( |_ ` A ) ) |
| 39 |
|
2z |
|- 2 e. ZZ |
| 40 |
|
flge |
|- ( ( A e. RR /\ 2 e. ZZ ) -> ( 2 <_ A <-> 2 <_ ( |_ ` A ) ) ) |
| 41 |
39 40
|
mpan2 |
|- ( A e. RR -> ( 2 <_ A <-> 2 <_ ( |_ ` A ) ) ) |
| 42 |
38 41
|
imbitrrid |
|- ( A e. RR -> ( ( |_ ` A ) e. ( ZZ>= ` 2 ) -> 2 <_ A ) ) |
| 43 |
42
|
imp |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 2 <_ A ) |
| 44 |
33 35 32 37 43
|
ltletrd |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 0 < A ) |
| 45 |
32 44
|
elrpd |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> A e. RR+ ) |
| 46 |
31 45
|
syldan |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> A e. RR+ ) |
| 47 |
46
|
relogcld |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` A ) e. RR ) |
| 48 |
47 22
|
rerpdivcld |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` A ) / ( log ` p ) ) e. RR ) |
| 49 |
|
1red |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 1 e. RR ) |
| 50 |
|
1lt2 |
|- 1 < 2 |
| 51 |
50
|
a1i |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 1 < 2 ) |
| 52 |
49 35 32 51 43
|
ltletrd |
|- ( ( A e. RR /\ ( |_ ` A ) e. ( ZZ>= ` 2 ) ) -> 1 < A ) |
| 53 |
31 52
|
syldan |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 1 < A ) |
| 54 |
|
rplogcl |
|- ( ( A e. RR /\ 1 < A ) -> ( log ` A ) e. RR+ ) |
| 55 |
53 54
|
syldan |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` A ) e. RR+ ) |
| 56 |
55 22
|
rpdivcld |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( log ` A ) / ( log ` p ) ) e. RR+ ) |
| 57 |
56
|
rpge0d |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 <_ ( ( log ` A ) / ( log ` p ) ) ) |
| 58 |
|
flge0nn0 |
|- ( ( ( ( log ` A ) / ( log ` p ) ) e. RR /\ 0 <_ ( ( log ` A ) / ( log ` p ) ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. NN0 ) |
| 59 |
48 57 58
|
syl2anc |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. NN0 ) |
| 60 |
|
hashfz1 |
|- ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. NN0 -> ( # ` ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) = ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) |
| 61 |
59 60
|
syl |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( # ` ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) = ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) |
| 62 |
61
|
oveq1d |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( # ` ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) x. ( log ` p ) ) = ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) x. ( log ` p ) ) ) |
| 63 |
59
|
nn0cnd |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) e. CC ) |
| 64 |
63 23
|
mulcomd |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) x. ( log ` p ) ) = ( ( log ` p ) x. ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) |
| 65 |
25 62 64
|
3eqtrd |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( log ` p ) = ( ( log ` p ) x. ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) |
| 66 |
16 65
|
eqtrd |
|- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( Lam ` ( p ^ k ) ) = ( ( log ` p ) x. ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) |
| 67 |
66
|
sumeq2dv |
|- ( A e. RR -> sum_ p e. ( ( 0 [,] A ) i^i Prime ) sum_ k e. ( 1 ... ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ( Lam ` ( p ^ k ) ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( ( log ` p ) x. ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) |
| 68 |
1 10 67
|
3eqtrd |
|- ( A e. RR -> ( psi ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( ( log ` p ) x. ( |_ ` ( ( log ` A ) / ( log ` p ) ) ) ) ) |