Metamath Proof Explorer


Theorem chpval2

Description: Express the second Chebyshev function directly as a sum over the primes less than A (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chpval2 A ψ A = p 0 A log p log A log p

Proof

Step Hyp Ref Expression
1 chpval A ψ A = n = 1 A Λ n
2 fveq2 n = p k Λ n = Λ p k
3 id A A
4 elfznn n 1 A n
5 4 adantl A n 1 A n
6 vmacl n Λ n
7 5 6 syl A n 1 A Λ n
8 7 recnd A n 1 A Λ n
9 simprr A n 1 A Λ n = 0 Λ n = 0
10 2 3 8 9 fsumvma2 A n = 1 A Λ n = p 0 A k = 1 log A log p Λ p k
11 simpr A p 0 A p 0 A
12 11 elin2d A p 0 A p
13 elfznn k 1 log A log p k
14 vmappw p k Λ p k = log p
15 12 13 14 syl2an A p 0 A k 1 log A log p Λ p k = log p
16 15 sumeq2dv A p 0 A k = 1 log A log p Λ p k = k = 1 log A log p log p
17 fzfid A p 0 A 1 log A log p Fin
18 prmuz2 p p 2
19 eluzelre p 2 p
20 eluz2gt1 p 2 1 < p
21 19 20 rplogcld p 2 log p +
22 12 18 21 3syl A p 0 A log p +
23 22 rpcnd A p 0 A log p
24 fsumconst 1 log A log p Fin log p k = 1 log A log p log p = 1 log A log p log p
25 17 23 24 syl2anc A p 0 A k = 1 log A log p log p = 1 log A log p log p
26 ppisval A 0 A = 2 A
27 inss1 2 A 2 A
28 26 27 eqsstrdi A 0 A 2 A
29 28 sselda A p 0 A p 2 A
30 elfzuz2 p 2 A A 2
31 29 30 syl A p 0 A A 2
32 simpl A A 2 A
33 0red A A 2 0
34 2re 2
35 34 a1i A A 2 2
36 2pos 0 < 2
37 36 a1i A A 2 0 < 2
38 eluzle A 2 2 A
39 2z 2
40 flge A 2 2 A 2 A
41 39 40 mpan2 A 2 A 2 A
42 38 41 syl5ibr A A 2 2 A
43 42 imp A A 2 2 A
44 33 35 32 37 43 ltletrd A A 2 0 < A
45 32 44 elrpd A A 2 A +
46 31 45 syldan A p 0 A A +
47 46 relogcld A p 0 A log A
48 47 22 rerpdivcld A p 0 A log A log p
49 1red A A 2 1
50 1lt2 1 < 2
51 50 a1i A A 2 1 < 2
52 49 35 32 51 43 ltletrd A A 2 1 < A
53 31 52 syldan A p 0 A 1 < A
54 rplogcl A 1 < A log A +
55 53 54 syldan A p 0 A log A +
56 55 22 rpdivcld A p 0 A log A log p +
57 56 rpge0d A p 0 A 0 log A log p
58 flge0nn0 log A log p 0 log A log p log A log p 0
59 48 57 58 syl2anc A p 0 A log A log p 0
60 hashfz1 log A log p 0 1 log A log p = log A log p
61 59 60 syl A p 0 A 1 log A log p = log A log p
62 61 oveq1d A p 0 A 1 log A log p log p = log A log p log p
63 59 nn0cnd A p 0 A log A log p
64 63 23 mulcomd A p 0 A log A log p log p = log p log A log p
65 25 62 64 3eqtrd A p 0 A k = 1 log A log p log p = log p log A log p
66 16 65 eqtrd A p 0 A k = 1 log A log p Λ p k = log p log A log p
67 66 sumeq2dv A p 0 A k = 1 log A log p Λ p k = p 0 A log p log A log p
68 1 10 67 3eqtrd A ψ A = p 0 A log p log A log p