Metamath Proof Explorer


Theorem chpchtsum

Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016)

Ref Expression
Assertion chpchtsum A ψ A = k = 1 A θ A 1 k

Proof

Step Hyp Ref Expression
1 fzfid A p 0 A 1 log A log p Fin
2 simpr A p 0 A p 0 A
3 2 elin2d A p 0 A p
4 prmnn p p
5 3 4 syl A p 0 A p
6 5 nnrpd A p 0 A p +
7 6 relogcld A p 0 A log p
8 7 recnd A p 0 A log p
9 fsumconst 1 log A log p Fin log p k = 1 log A log p log p = 1 log A log p log p
10 1 8 9 syl2anc A p 0 A k = 1 log A log p log p = 1 log A log p log p
11 simpl A p 0 A A
12 1red A p 0 A 1
13 5 nnred A p 0 A p
14 prmuz2 p p 2
15 3 14 syl A p 0 A p 2
16 eluz2gt1 p 2 1 < p
17 15 16 syl A p 0 A 1 < p
18 2 elin1d A p 0 A p 0 A
19 0re 0
20 elicc2 0 A p 0 A p 0 p p A
21 19 11 20 sylancr A p 0 A p 0 A p 0 p p A
22 18 21 mpbid A p 0 A p 0 p p A
23 22 simp3d A p 0 A p A
24 12 13 11 17 23 ltletrd A p 0 A 1 < A
25 11 24 rplogcld A p 0 A log A +
26 13 17 rplogcld A p 0 A log p +
27 25 26 rpdivcld A p 0 A log A log p +
28 27 rpred A p 0 A log A log p
29 27 rpge0d A p 0 A 0 log A log p
30 flge0nn0 log A log p 0 log A log p log A log p 0
31 28 29 30 syl2anc A p 0 A log A log p 0
32 hashfz1 log A log p 0 1 log A log p = log A log p
33 31 32 syl A p 0 A 1 log A log p = log A log p
34 33 oveq1d A p 0 A 1 log A log p log p = log A log p log p
35 28 flcld A p 0 A log A log p
36 35 zcnd A p 0 A log A log p
37 36 8 mulcomd A p 0 A log A log p log p = log p log A log p
38 10 34 37 3eqtrrd A p 0 A log p log A log p = k = 1 log A log p log p
39 38 sumeq2dv A p 0 A log p log A log p = p 0 A k = 1 log A log p log p
40 chpval2 A ψ A = p 0 A log p log A log p
41 simpl A k 1 A A
42 0red A k 1 A 0
43 1red A k 1 A 1
44 0lt1 0 < 1
45 44 a1i A k 1 A 0 < 1
46 elfzuz2 k 1 A A 1
47 eluzle A 1 1 A
48 47 adantl A A 1 1 A
49 simpl A A 1 A
50 1z 1
51 flge A 1 1 A 1 A
52 49 50 51 sylancl A A 1 1 A 1 A
53 48 52 mpbird A A 1 1 A
54 46 53 sylan2 A k 1 A 1 A
55 42 43 41 45 54 ltletrd A k 1 A 0 < A
56 42 41 55 ltled A k 1 A 0 A
57 elfznn k 1 A k
58 57 adantl A k 1 A k
59 58 nnrecred A k 1 A 1 k
60 41 56 59 recxpcld A k 1 A A 1 k
61 chtval A 1 k θ A 1 k = p 0 A 1 k log p
62 60 61 syl A k 1 A θ A 1 k = p 0 A 1 k log p
63 62 sumeq2dv A k = 1 A θ A 1 k = k = 1 A p 0 A 1 k log p
64 ppifi A 0 A Fin
65 fzfid A 1 A Fin
66 elinel2 p 0 A p
67 elfznn k 1 log A log p k
68 66 67 anim12i p 0 A k 1 log A log p p k
69 68 a1i A p 0 A k 1 log A log p p k
70 0red A p 0 A 0
71 inss2 0 A
72 71 a1i A 0 A
73 72 sselda A p 0 A p
74 73 4 syl A p 0 A p
75 74 nnred A p 0 A p
76 74 nngt0d A p 0 A 0 < p
77 70 75 11 76 23 ltletrd A p 0 A 0 < A
78 77 ex A p 0 A 0 < A
79 78 adantrd A p 0 A k 1 log A log p 0 < A
80 69 79 jcad A p 0 A k 1 log A log p p k 0 < A
81 elinel2 p 0 A 1 k p
82 57 81 anim12ci k 1 A p 0 A 1 k p k
83 82 a1i A k 1 A p 0 A 1 k p k
84 55 ex A k 1 A 0 < A
85 84 adantrd A k 1 A p 0 A 1 k 0 < A
86 83 85 jcad A k 1 A p 0 A 1 k p k 0 < A
87 elin p 0 A p 0 A p
88 simprll A p k 0 < A p
89 88 biantrud A p k 0 < A p 0 A p 0 A p
90 0red A p k 0 < A 0
91 simpl A p k 0 < A A
92 88 4 syl A p k 0 < A p
93 92 nnred A p k 0 < A p
94 92 nnnn0d A p k 0 < A p 0
95 94 nn0ge0d A p k 0 < A 0 p
96 df-3an p 0 p p A p 0 p p A
97 20 96 bitrdi 0 A p 0 A p 0 p p A
98 97 baibd 0 A p 0 p p 0 A p A
99 90 91 93 95 98 syl22anc A p k 0 < A p 0 A p A
100 89 99 bitr3d A p k 0 < A p 0 A p p A
101 87 100 syl5bb A p k 0 < A p 0 A p A
102 simprr A p k 0 < A 0 < A
103 91 102 elrpd A p k 0 < A A +
104 103 relogcld A p k 0 < A log A
105 88 14 syl A p k 0 < A p 2
106 105 16 syl A p k 0 < A 1 < p
107 93 106 rplogcld A p k 0 < A log p +
108 104 107 rerpdivcld A p k 0 < A log A log p
109 simprlr A p k 0 < A k
110 109 nnzd A p k 0 < A k
111 flge log A log p k k log A log p k log A log p
112 108 110 111 syl2anc A p k 0 < A k log A log p k log A log p
113 109 nnnn0d A p k 0 < A k 0
114 92 113 nnexpcld A p k 0 < A p k
115 114 nnrpd A p k 0 < A p k +
116 115 103 logled A p k 0 < A p k A log p k log A
117 92 nnrpd A p k 0 < A p +
118 relogexp p + k log p k = k log p
119 117 110 118 syl2anc A p k 0 < A log p k = k log p
120 119 breq1d A p k 0 < A log p k log A k log p log A
121 109 nnred A p k 0 < A k
122 121 104 107 lemuldivd A p k 0 < A k log p log A k log A log p
123 116 120 122 3bitrd A p k 0 < A p k A k log A log p
124 nnuz = 1
125 109 124 eleqtrdi A p k 0 < A k 1
126 108 flcld A p k 0 < A log A log p
127 elfz5 k 1 log A log p k 1 log A log p k log A log p
128 125 126 127 syl2anc A p k 0 < A k 1 log A log p k log A log p
129 112 123 128 3bitr4rd A p k 0 < A k 1 log A log p p k A
130 101 129 anbi12d A p k 0 < A p 0 A k 1 log A log p p A p k A
131 91 flcld A p k 0 < A A
132 elfz5 k 1 A k 1 A k A
133 125 131 132 syl2anc A p k 0 < A k 1 A k A
134 flge A k k A k A
135 91 110 134 syl2anc A p k 0 < A k A k A
136 133 135 bitr4d A p k 0 < A k 1 A k A
137 elin p 0 A 1 k p 0 A 1 k p
138 88 biantrud A p k 0 < A p 0 A 1 k p 0 A 1 k p
139 103 rpge0d A p k 0 < A 0 A
140 109 nnrecred A p k 0 < A 1 k
141 91 139 140 recxpcld A p k 0 < A A 1 k
142 elicc2 0 A 1 k p 0 A 1 k p 0 p p A 1 k
143 df-3an p 0 p p A 1 k p 0 p p A 1 k
144 142 143 bitrdi 0 A 1 k p 0 A 1 k p 0 p p A 1 k
145 144 baibd 0 A 1 k p 0 p p 0 A 1 k p A 1 k
146 90 141 93 95 145 syl22anc A p k 0 < A p 0 A 1 k p A 1 k
147 138 146 bitr3d A p k 0 < A p 0 A 1 k p p A 1 k
148 91 139 140 cxpge0d A p k 0 < A 0 A 1 k
149 109 nnrpd A p k 0 < A k +
150 93 95 141 148 149 cxple2d A p k 0 < A p A 1 k p k A 1 k k
151 92 nncnd A p k 0 < A p
152 cxpexp p k 0 p k = p k
153 151 113 152 syl2anc A p k 0 < A p k = p k
154 109 nncnd A p k 0 < A k
155 109 nnne0d A p k 0 < A k 0
156 154 155 recid2d A p k 0 < A 1 k k = 1
157 156 oveq2d A p k 0 < A A 1 k k = A 1
158 103 140 154 cxpmuld A p k 0 < A A 1 k k = A 1 k k
159 91 recnd A p k 0 < A A
160 159 cxp1d A p k 0 < A A 1 = A
161 157 158 160 3eqtr3d A p k 0 < A A 1 k k = A
162 153 161 breq12d A p k 0 < A p k A 1 k k p k A
163 147 150 162 3bitrd A p k 0 < A p 0 A 1 k p p k A
164 137 163 syl5bb A p k 0 < A p 0 A 1 k p k A
165 136 164 anbi12d A p k 0 < A k 1 A p 0 A 1 k k A p k A
166 114 nnred A p k 0 < A p k
167 bernneq3 p 2 k 0 k < p k
168 105 113 167 syl2anc A p k 0 < A k < p k
169 121 166 168 ltled A p k 0 < A k p k
170 letr k p k A k p k p k A k A
171 121 166 91 170 syl3anc A p k 0 < A k p k p k A k A
172 169 171 mpand A p k 0 < A p k A k A
173 172 pm4.71rd A p k 0 < A p k A k A p k A
174 151 exp1d A p k 0 < A p 1 = p
175 92 nnge1d A p k 0 < A 1 p
176 93 175 125 leexp2ad A p k 0 < A p 1 p k
177 174 176 eqbrtrrd A p k 0 < A p p k
178 letr p p k A p p k p k A p A
179 93 166 91 178 syl3anc A p k 0 < A p p k p k A p A
180 177 179 mpand A p k 0 < A p k A p A
181 180 pm4.71rd A p k 0 < A p k A p A p k A
182 165 173 181 3bitr2rd A p k 0 < A p A p k A k 1 A p 0 A 1 k
183 130 182 bitrd A p k 0 < A p 0 A k 1 log A log p k 1 A p 0 A 1 k
184 183 ex A p k 0 < A p 0 A k 1 log A log p k 1 A p 0 A 1 k
185 80 86 184 pm5.21ndd A p 0 A k 1 log A log p k 1 A p 0 A 1 k
186 8 adantrr A p 0 A k 1 log A log p log p
187 64 65 1 185 186 fsumcom2 A p 0 A k = 1 log A log p log p = k = 1 A p 0 A 1 k log p
188 63 187 eqtr4d A k = 1 A θ A 1 k = p 0 A k = 1 log A log p log p
189 39 40 188 3eqtr4d A ψ A = k = 1 A θ A 1 k