Metamath Proof Explorer


Theorem lemuldivd

Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses ltmul1d.1 φA
ltmul1d.2 φB
ltmul1d.3 φC+
Assertion lemuldivd φACBABC

Proof

Step Hyp Ref Expression
1 ltmul1d.1 φA
2 ltmul1d.2 φB
3 ltmul1d.3 φC+
4 3 rpregt0d φC0<C
5 lemuldiv ABC0<CACBABC
6 1 2 4 5 syl3anc φACBABC