Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ Fin ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) |
3 |
2
|
elin2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
4 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
5 |
3 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
6 |
5
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
7 |
6
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
8 |
7
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
9 |
|
fsumconst |
⊢ ( ( ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ∈ Fin ∧ ( log ‘ 𝑝 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) · ( log ‘ 𝑝 ) ) ) |
10 |
1 8 9
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) = ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) · ( log ‘ 𝑝 ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℝ ) |
12 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 ∈ ℝ ) |
13 |
5
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
14 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
15 |
3 14
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
16 |
|
eluz2gt1 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) |
17 |
15 16
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 < 𝑝 ) |
18 |
2
|
elin1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( 0 [,] 𝐴 ) ) |
19 |
|
0re |
⊢ 0 ∈ ℝ |
20 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
21 |
19 11 20
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
22 |
18 21
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) |
23 |
22
|
simp3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ≤ 𝐴 ) |
24 |
12 13 11 17 23
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 1 < 𝐴 ) |
25 |
11 24
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝐴 ) ∈ ℝ+ ) |
26 |
13 17
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
27 |
25 26
|
rpdivcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ+ ) |
28 |
27
|
rpred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
29 |
27
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) |
30 |
|
flge0nn0 |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ0 ) |
31 |
28 29 30
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ0 ) |
32 |
|
hashfz1 |
⊢ ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) = ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) = ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
34 |
33
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ♯ ‘ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) · ( log ‘ 𝑝 ) ) = ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) · ( log ‘ 𝑝 ) ) ) |
35 |
28
|
flcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) |
36 |
35
|
zcnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℂ ) |
37 |
36 8
|
mulcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) · ( log ‘ 𝑝 ) ) = ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
38 |
10 34 37
|
3eqtrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) ) |
39 |
38
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) ) |
40 |
|
chpval2 |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( ( log ‘ 𝑝 ) · ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
41 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
42 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ∈ ℝ ) |
43 |
|
1red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 1 ∈ ℝ ) |
44 |
|
0lt1 |
⊢ 0 < 1 |
45 |
44
|
a1i |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 < 1 ) |
46 |
|
elfzuz2 |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
47 |
|
eluzle |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) → 1 ≤ ( ⌊ ‘ 𝐴 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) → 1 ≤ ( ⌊ ‘ 𝐴 ) ) |
49 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) → 𝐴 ∈ ℝ ) |
50 |
|
1z |
⊢ 1 ∈ ℤ |
51 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ∈ ℤ ) → ( 1 ≤ 𝐴 ↔ 1 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
52 |
49 50 51
|
sylancl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) → ( 1 ≤ 𝐴 ↔ 1 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
53 |
48 52
|
mpbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) → 1 ≤ 𝐴 ) |
54 |
46 53
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 1 ≤ 𝐴 ) |
55 |
42 43 41 45 54
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 < 𝐴 ) |
56 |
42 41 55
|
ltled |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ≤ 𝐴 ) |
57 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑘 ∈ ℕ ) |
58 |
57
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑘 ∈ ℕ ) |
59 |
58
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
60 |
41 56 59
|
recxpcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ∈ ℝ ) |
61 |
|
chtval |
⊢ ( ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ∈ ℝ → ( θ ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
62 |
60 61
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( θ ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) = Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
63 |
62
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( θ ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
64 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
65 |
|
fzfid |
⊢ ( 𝐴 ∈ ℝ → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
66 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
67 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
68 |
66 67
|
anim12i |
⊢ ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
69 |
68
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) |
70 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 ∈ ℝ ) |
71 |
|
inss2 |
⊢ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ℙ |
72 |
71
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ℙ ) |
73 |
72
|
sselda |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
74 |
73 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
75 |
74
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
76 |
74
|
nngt0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 < 𝑝 ) |
77 |
70 75 11 76 23
|
ltletrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ) → 0 < 𝐴 ) |
78 |
77
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 0 < 𝐴 ) ) |
79 |
78
|
adantrd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → 0 < 𝐴 ) ) |
80 |
69 79
|
jcad |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) ) |
81 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
82 |
57 81
|
anim12ci |
⊢ ( ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
83 |
82
|
a1i |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ) |
84 |
55
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 0 < 𝐴 ) ) |
85 |
84
|
adantrd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) → 0 < 𝐴 ) ) |
86 |
83 85
|
jcad |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) → ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) ) |
87 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) |
88 |
|
simprll |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ℙ ) |
89 |
88
|
biantrud |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) ) |
90 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 0 ∈ ℝ ) |
91 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
92 |
88 4
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ℕ ) |
93 |
92
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ℝ ) |
94 |
92
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ℕ0 ) |
95 |
94
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝑝 ) |
96 |
|
df-3an |
⊢ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ 𝐴 ) ) |
97 |
20 96
|
bitrdi |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ 𝐴 ) ) ) |
98 |
97
|
baibd |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
99 |
90 91 93 95 98
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
100 |
89 99
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑝 ∈ ℙ ) ↔ 𝑝 ≤ 𝐴 ) ) |
101 |
87 100
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ≤ 𝐴 ) ) |
102 |
|
simprr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 0 < 𝐴 ) |
103 |
91 102
|
elrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℝ+ ) |
104 |
103
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
105 |
88 14
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
106 |
105 16
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 1 < 𝑝 ) |
107 |
93 106
|
rplogcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
108 |
104 107
|
rerpdivcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
109 |
|
simprlr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ℕ ) |
110 |
109
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ℤ ) |
111 |
|
flge |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
112 |
108 110 111
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
113 |
109
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ℕ0 ) |
114 |
92 113
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
115 |
114
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ+ ) |
116 |
115 103
|
logled |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
117 |
92
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ℝ+ ) |
118 |
|
relogexp |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
119 |
117 110 118
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
120 |
119
|
breq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
121 |
109
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ℝ ) |
122 |
121 104 107
|
lemuldivd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
123 |
116 120 122
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
124 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
125 |
109 124
|
eleqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
126 |
108
|
flcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) |
127 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
128 |
125 126 127
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
129 |
112 123 128
|
3bitr4rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) |
130 |
101 129
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ≤ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) ) |
131 |
91
|
flcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
132 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
133 |
125 131 132
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
134 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ≤ 𝐴 ↔ 𝑘 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
135 |
91 110 134
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑘 ≤ 𝐴 ↔ 𝑘 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
136 |
133 135
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ 𝑘 ≤ 𝐴 ) ) |
137 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∧ 𝑝 ∈ ℙ ) ) |
138 |
88
|
biantrud |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ↔ ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∧ 𝑝 ∈ ℙ ) ) ) |
139 |
103
|
rpge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 0 ≤ 𝐴 ) |
140 |
109
|
nnrecred |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
141 |
91 139 140
|
recxpcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ∈ ℝ ) |
142 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) ) |
143 |
|
df-3an |
⊢ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) |
144 |
142 143
|
bitrdi |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) ) |
145 |
144
|
baibd |
⊢ ( ( ( 0 ∈ ℝ ∧ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ) → ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ↔ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) |
146 |
90 141 93 95 145
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ↔ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) |
147 |
138 146
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∧ 𝑝 ∈ ℙ ) ↔ 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) |
148 |
91 139 140
|
cxpge0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 0 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) |
149 |
109
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ℝ+ ) |
150 |
93 95 141 148 149
|
cxple2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ≤ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ↔ ( 𝑝 ↑𝑐 𝑘 ) ≤ ( ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ↑𝑐 𝑘 ) ) ) |
151 |
92
|
nncnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ∈ ℂ ) |
152 |
|
cxpexp |
⊢ ( ( 𝑝 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑝 ↑𝑐 𝑘 ) = ( 𝑝 ↑ 𝑘 ) ) |
153 |
151 113 152
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ↑𝑐 𝑘 ) = ( 𝑝 ↑ 𝑘 ) ) |
154 |
109
|
nncnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ∈ ℂ ) |
155 |
109
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ≠ 0 ) |
156 |
154 155
|
recid2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 1 / 𝑘 ) · 𝑘 ) = 1 ) |
157 |
156
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑘 ) · 𝑘 ) ) = ( 𝐴 ↑𝑐 1 ) ) |
158 |
103 140 154
|
cxpmuld |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ↑𝑐 ( ( 1 / 𝑘 ) · 𝑘 ) ) = ( ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ↑𝑐 𝑘 ) ) |
159 |
91
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝐴 ∈ ℂ ) |
160 |
159
|
cxp1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝐴 ↑𝑐 1 ) = 𝐴 ) |
161 |
157 158 160
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ↑𝑐 𝑘 ) = 𝐴 ) |
162 |
153 161
|
breq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑𝑐 𝑘 ) ≤ ( ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ↑𝑐 𝑘 ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) |
163 |
147 150 162
|
3bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ∈ ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∧ 𝑝 ∈ ℙ ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) |
164 |
137 163
|
syl5bb |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) |
165 |
136 164
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) ↔ ( 𝑘 ≤ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) ) |
166 |
114
|
nnred |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ ) |
167 |
|
bernneq3 |
⊢ ( ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 < ( 𝑝 ↑ 𝑘 ) ) |
168 |
105 113 167
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 < ( 𝑝 ↑ 𝑘 ) ) |
169 |
121 166 168
|
ltled |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑘 ≤ ( 𝑝 ↑ 𝑘 ) ) |
170 |
|
letr |
⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑘 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑘 ≤ 𝐴 ) ) |
171 |
121 166 91 170
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑘 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑘 ≤ 𝐴 ) ) |
172 |
169 171
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 → 𝑘 ≤ 𝐴 ) ) |
173 |
172
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑘 ≤ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) ) |
174 |
151
|
exp1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
175 |
92
|
nnge1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 1 ≤ 𝑝 ) |
176 |
93 175 125
|
leexp2ad |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( 𝑝 ↑ 1 ) ≤ ( 𝑝 ↑ 𝑘 ) ) |
177 |
174 176
|
eqbrtrrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ) |
178 |
|
letr |
⊢ ( ( 𝑝 ∈ ℝ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑝 ≤ 𝐴 ) ) |
179 |
93 166 91 178
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑝 ≤ 𝐴 ) ) |
180 |
177 179
|
mpand |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
181 |
180
|
pm4.71rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ≤ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) ) |
182 |
165 173 181
|
3bitr2rd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ≤ 𝐴 ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ↔ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) ) ) |
183 |
130 182
|
bitrd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) ) ) |
184 |
183
|
ex |
⊢ ( 𝐴 ∈ ℝ → ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ 0 < 𝐴 ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) ) ) ) |
185 |
80 86 184
|
pm5.21ndd |
⊢ ( 𝐴 ∈ ℝ → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ) ) ) |
186 |
8
|
adantrr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) → ( log ‘ 𝑝 ) ∈ ℂ ) |
187 |
64 65 1 185 186
|
fsumcom2 |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑝 ∈ ( ( 0 [,] ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
188 |
63 187
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( θ ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ( log ‘ 𝑝 ) ) |
189 |
39 40 188
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( θ ‘ ( 𝐴 ↑𝑐 ( 1 / 𝑘 ) ) ) ) |