Metamath Proof Explorer


Theorem logled

Description: Natural logarithm preserves <_ . (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses relogcld.1 φA+
relogmuld.2 φB+
Assertion logled φABlogAlogB

Proof

Step Hyp Ref Expression
1 relogcld.1 φA+
2 relogmuld.2 φB+
3 logleb A+B+ABlogAlogB
4 1 2 3 syl2anc φABlogAlogB