Metamath Proof Explorer


Theorem ppifi

Description: The set of primes less than A is a finite set. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion ppifi A0AFin

Proof

Step Hyp Ref Expression
1 ppisval A0A=2A
2 fzfi 2AFin
3 inss1 2A2A
4 ssfi 2AFin2A2A2AFin
5 2 3 4 mp2an 2AFin
6 1 5 eqeltrdi A0AFin