| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
|
| 2 |
|
nnnn0 |
|
| 3 |
|
nnexpcl |
|
| 4 |
1 2 3
|
syl2an |
|
| 5 |
|
eqid |
|
| 6 |
5
|
vmaval |
|
| 7 |
4 6
|
syl |
|
| 8 |
|
df-rab |
|
| 9 |
|
prmdvdsexpb |
|
| 10 |
9
|
biimpd |
|
| 11 |
10
|
3coml |
|
| 12 |
11
|
3expa |
|
| 13 |
12
|
expimpd |
|
| 14 |
|
simpl |
|
| 15 |
|
prmz |
|
| 16 |
|
iddvdsexp |
|
| 17 |
15 16
|
sylan |
|
| 18 |
14 17
|
jca |
|
| 19 |
|
eleq1 |
|
| 20 |
|
breq1 |
|
| 21 |
19 20
|
anbi12d |
|
| 22 |
18 21
|
syl5ibrcom |
|
| 23 |
13 22
|
impbid |
|
| 24 |
|
velsn |
|
| 25 |
23 24
|
bitr4di |
|
| 26 |
25
|
eqabcdv |
|
| 27 |
8 26
|
eqtrid |
|
| 28 |
27
|
fveq2d |
|
| 29 |
|
hashsng |
|
| 30 |
29
|
adantr |
|
| 31 |
28 30
|
eqtrd |
|
| 32 |
31
|
iftrued |
|
| 33 |
27
|
unieqd |
|
| 34 |
|
unisng |
|
| 35 |
34
|
adantr |
|
| 36 |
33 35
|
eqtrd |
|
| 37 |
36
|
fveq2d |
|
| 38 |
7 32 37
|
3eqtrd |
|