| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 2 |
|
nnnn0 |
⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℕ0 ) |
| 3 |
|
nnexpcl |
⊢ ( ( 𝑃 ∈ ℕ ∧ 𝐾 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ↑ 𝐾 ) ∈ ℕ ) |
| 5 |
|
eqid |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } |
| 6 |
5
|
vmaval |
⊢ ( ( 𝑃 ↑ 𝐾 ) ∈ ℕ → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) ) |
| 7 |
4 6
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) ) |
| 8 |
|
df-rab |
⊢ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑝 ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) } |
| 9 |
|
prmdvdsexpb |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ↔ 𝑝 = 𝑃 ) ) |
| 10 |
9
|
biimpd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
| 11 |
10
|
3coml |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
| 12 |
11
|
3expa |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) → 𝑝 = 𝑃 ) ) |
| 13 |
12
|
expimpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) → 𝑝 = 𝑃 ) ) |
| 14 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
| 15 |
|
prmz |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℤ ) |
| 16 |
|
iddvdsexp |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) |
| 17 |
15 16
|
sylan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) |
| 18 |
14 17
|
jca |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) |
| 19 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ ℙ ↔ 𝑃 ∈ ℙ ) ) |
| 20 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ↔ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) |
| 21 |
19 20
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ ( 𝑃 ∈ ℙ ∧ 𝑃 ∥ ( 𝑃 ↑ 𝐾 ) ) ) ) |
| 22 |
18 21
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( 𝑝 = 𝑃 → ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ) ) |
| 23 |
13 22
|
impbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ 𝑝 = 𝑃 ) ) |
| 24 |
|
velsn |
⊢ ( 𝑝 ∈ { 𝑃 } ↔ 𝑝 = 𝑃 ) |
| 25 |
23 24
|
bitr4di |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) ↔ 𝑝 ∈ { 𝑃 } ) ) |
| 26 |
25
|
eqabcdv |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑝 ∣ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) ) } = { 𝑃 } ) |
| 27 |
8 26
|
eqtrid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = { 𝑃 } ) |
| 28 |
27
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = ( ♯ ‘ { 𝑃 } ) ) |
| 29 |
|
hashsng |
⊢ ( 𝑃 ∈ ℙ → ( ♯ ‘ { 𝑃 } ) = 1 ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑃 } ) = 1 ) |
| 31 |
28 30
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 ) |
| 32 |
31
|
iftrued |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → if ( ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = 1 , ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) , 0 ) = ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) ) |
| 33 |
27
|
unieqd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = ∪ { 𝑃 } ) |
| 34 |
|
unisng |
⊢ ( 𝑃 ∈ ℙ → ∪ { 𝑃 } = 𝑃 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑃 } = 𝑃 ) |
| 36 |
33 35
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } = 𝑃 ) |
| 37 |
36
|
fveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( log ‘ ∪ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ ( 𝑃 ↑ 𝐾 ) } ) = ( log ‘ 𝑃 ) ) |
| 38 |
7 32 37
|
3eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐾 ∈ ℕ ) → ( Λ ‘ ( 𝑃 ↑ 𝐾 ) ) = ( log ‘ 𝑃 ) ) |