| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumvma2.1 |
⊢ ( 𝑥 = ( 𝑝 ↑ 𝑘 ) → 𝐵 = 𝐶 ) |
| 2 |
|
fsumvma2.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 3 |
|
fsumvma2.3 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) |
| 4 |
|
fsumvma2.4 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ ( Λ ‘ 𝑥 ) = 0 ) ) → 𝐵 = 0 ) |
| 5 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
| 6 |
|
fz1ssnn |
⊢ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ℕ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ℕ ) |
| 8 |
|
ppifi |
⊢ ( 𝐴 ∈ ℝ → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∈ Fin ) |
| 10 |
|
elinel2 |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) → 𝑝 ∈ ℙ ) |
| 11 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 12 |
10 11
|
anim12i |
⊢ ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) → ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) |
| 13 |
12
|
pm4.71ri |
⊢ ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝐴 ∈ ℝ ) |
| 15 |
|
prmnn |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) |
| 16 |
15
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℕ ) |
| 17 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 18 |
17
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ0 ) |
| 19 |
16 18
|
nnexpcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 20 |
19
|
nnzd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) |
| 21 |
|
flge |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 22 |
14 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 23 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℙ ) |
| 24 |
23 15
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℕ ) |
| 25 |
24
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℝ+ ) |
| 26 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℕ ) |
| 27 |
26
|
nnzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℤ ) |
| 28 |
|
relogexp |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 𝑘 ∈ ℤ ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
| 29 |
25 27 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ ( 𝑝 ↑ 𝑘 ) ) = ( 𝑘 · ( log ‘ 𝑝 ) ) ) |
| 30 |
29
|
breq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
| 31 |
26
|
nnred |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ℝ ) |
| 32 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 33 |
|
0red |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 ∈ ℝ ) |
| 34 |
16
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℝ ) |
| 35 |
34
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ∈ ℝ ) |
| 36 |
24
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 < 𝑝 ) |
| 37 |
|
0red |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 0 ∈ ℝ ) |
| 38 |
16
|
nnnn0d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℕ0 ) |
| 39 |
38
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 0 ≤ 𝑝 ) |
| 40 |
|
elicc2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 41 |
|
df-3an |
⊢ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ∧ 𝑝 ≤ 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ 𝐴 ) ) |
| 42 |
40 41
|
bitrdi |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ ( ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ∧ 𝑝 ≤ 𝐴 ) ) ) |
| 43 |
42
|
baibd |
⊢ ( ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ ( 𝑝 ∈ ℝ ∧ 0 ≤ 𝑝 ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
| 44 |
37 14 34 39 43
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ∈ ( 0 [,] 𝐴 ) ↔ 𝑝 ≤ 𝐴 ) ) |
| 45 |
44
|
biimpa |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑝 ≤ 𝐴 ) |
| 46 |
33 35 32 36 45
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 0 < 𝐴 ) |
| 47 |
32 46
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝐴 ∈ ℝ+ ) |
| 48 |
47
|
relogcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 49 |
|
prmuz2 |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 50 |
|
eluzelre |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 𝑝 ∈ ℝ ) |
| 51 |
|
eluz2gt1 |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑝 ) |
| 52 |
50 51
|
rplogcld |
⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 53 |
23 49 52
|
3syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 54 |
31 48 53
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑘 · ( log ‘ 𝑝 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) |
| 55 |
48 53
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ) |
| 56 |
|
flge |
⊢ ( ( ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 57 |
55 27 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑘 ≤ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 58 |
30 54 57
|
3bitrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 59 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℕ ) |
| 60 |
59
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ+ ) |
| 61 |
60 47
|
logled |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( log ‘ ( 𝑝 ↑ 𝑘 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
| 62 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ ) |
| 63 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 64 |
62 63
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 66 |
55
|
flcld |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) |
| 67 |
|
elfz5 |
⊢ ( ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ∈ ℤ ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 68 |
65 66 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ↔ 𝑘 ≤ ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) |
| 69 |
58 61 68
|
3bitr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) ∧ 𝑝 ∈ ( 0 [,] 𝐴 ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) |
| 70 |
69
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ) |
| 71 |
16
|
nncnd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ∈ ℂ ) |
| 72 |
71
|
exp1d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 1 ) = 𝑝 ) |
| 73 |
16
|
nnge1d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 1 ≤ 𝑝 ) |
| 74 |
34 73 64
|
leexp2ad |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 1 ) ≤ ( 𝑝 ↑ 𝑘 ) ) |
| 75 |
72 74
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ) |
| 76 |
19
|
nnred |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ℝ ) |
| 77 |
|
letr |
⊢ ( ( 𝑝 ∈ ℝ ∧ ( 𝑝 ↑ 𝑘 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑝 ≤ 𝐴 ) ) |
| 78 |
34 76 14 77
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ≤ ( 𝑝 ↑ 𝑘 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) → 𝑝 ≤ 𝐴 ) ) |
| 79 |
75 78
|
mpand |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 → 𝑝 ≤ 𝐴 ) ) |
| 80 |
79 44
|
sylibrd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 → 𝑝 ∈ ( 0 [,] 𝐴 ) ) ) |
| 81 |
80
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) ) |
| 82 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) |
| 83 |
82
|
rbaib |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] 𝐴 ) ) ) |
| 84 |
83
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ( 0 [,] 𝐴 ) ) ) |
| 85 |
84
|
anbi1d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ∈ ( 0 [,] 𝐴 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ) |
| 86 |
70 81 85
|
3bitr4rd |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ 𝐴 ) ) |
| 87 |
19 63
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑝 ↑ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 88 |
14
|
flcld |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 89 |
|
elfz5 |
⊢ ( ( ( 𝑝 ↑ 𝑘 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 90 |
87 88 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑝 ↑ 𝑘 ) ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 91 |
22 86 90
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 92 |
91
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) ) |
| 93 |
13 92
|
bitrid |
⊢ ( 𝜑 → ( ( 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) ) ↔ ( ( 𝑝 ∈ ℙ ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑝 ↑ 𝑘 ) ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ) ) |
| 94 |
1 5 7 9 93 3 4
|
fsumvma |
⊢ ( 𝜑 → Σ 𝑥 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐵 = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( ( log ‘ 𝐴 ) / ( log ‘ 𝑝 ) ) ) ) 𝐶 ) |