Step |
Hyp |
Ref |
Expression |
1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
2 |
|
flge1nn |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ ) |
4 |
3
|
nnnn0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ0 ) |
5 |
4
|
faccld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ ) |
6 |
5
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ+ ) |
7 |
6
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ℝ ) |
8 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) |
9 |
|
reflcl |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
11 |
3
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ+ ) |
12 |
11
|
relogcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ) |
13 |
10 12
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ℝ ) |
14 |
|
relogcl |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
16 |
8 15
|
remulcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 𝐴 · ( log ‘ 𝐴 ) ) ∈ ℝ ) |
17 |
|
facubnd |
⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ0 → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ) |
18 |
4 17
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ) |
19 |
3 4
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ∈ ℕ ) |
20 |
19
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ+ ) |
21 |
6 20
|
logled |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ↔ ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ) ) ) |
22 |
18 21
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( log ‘ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ) ) |
23 |
3
|
nnzd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
24 |
|
relogexp |
⊢ ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ+ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( log ‘ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ) = ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
25 |
11 23 24
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ( ⌊ ‘ 𝐴 ) ↑ ( ⌊ ‘ 𝐴 ) ) ) = ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
26 |
22 25
|
breqtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
27 |
|
flle |
⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
28 |
8 27
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
29 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
30 |
11 29
|
logled |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ↔ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
31 |
28 30
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( log ‘ 𝐴 ) ) |
32 |
11
|
rprege0d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
33 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
34 |
3
|
nnge1d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 1 ≤ ( ⌊ ‘ 𝐴 ) ) |
35 |
|
1rp |
⊢ 1 ∈ ℝ+ |
36 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ+ ) → ( 1 ≤ ( ⌊ ‘ 𝐴 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
37 |
35 11 36
|
sylancr |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( 1 ≤ ( ⌊ ‘ 𝐴 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
38 |
34 37
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ 1 ) ≤ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) |
39 |
33 38
|
eqbrtrrid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → 0 ≤ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) |
40 |
12 39
|
jca |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ) |
41 |
|
lemul12a |
⊢ ( ( ( ( ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( ⌊ ‘ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) ∧ ( ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∧ ( log ‘ 𝐴 ) ∈ ℝ ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( log ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( 𝐴 · ( log ‘ 𝐴 ) ) ) ) |
42 |
32 8 40 15 41
|
syl22anc |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( log ‘ 𝐴 ) ) → ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( 𝐴 · ( log ‘ 𝐴 ) ) ) ) |
43 |
28 31 42
|
mp2and |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) · ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( 𝐴 · ( log ‘ 𝐴 ) ) ) |
44 |
7 13 16 26 43
|
letrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ! ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ ( 𝐴 · ( log ‘ 𝐴 ) ) ) |