| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑚 = 0 → ( ! ‘ 𝑚 ) = ( ! ‘ 0 ) ) |
| 2 |
|
fac0 |
⊢ ( ! ‘ 0 ) = 1 |
| 3 |
1 2
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( ! ‘ 𝑚 ) = 1 ) |
| 4 |
|
id |
⊢ ( 𝑚 = 0 → 𝑚 = 0 ) |
| 5 |
4 4
|
oveq12d |
⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 𝑚 ) = ( 0 ↑ 0 ) ) |
| 6 |
|
0exp0e1 |
⊢ ( 0 ↑ 0 ) = 1 |
| 7 |
5 6
|
eqtrdi |
⊢ ( 𝑚 = 0 → ( 𝑚 ↑ 𝑚 ) = 1 ) |
| 8 |
3 7
|
breq12d |
⊢ ( 𝑚 = 0 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ 1 ≤ 1 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑘 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑘 ) ) |
| 10 |
|
id |
⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) |
| 11 |
10 10
|
oveq12d |
⊢ ( 𝑚 = 𝑘 → ( 𝑚 ↑ 𝑚 ) = ( 𝑘 ↑ 𝑘 ) ) |
| 12 |
9 11
|
breq12d |
⊢ ( 𝑚 = 𝑘 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ! ‘ 𝑚 ) = ( ! ‘ ( 𝑘 + 1 ) ) ) |
| 14 |
|
id |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → 𝑚 = ( 𝑘 + 1 ) ) |
| 15 |
14 14
|
oveq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 ↑ 𝑚 ) = ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) |
| 16 |
13 15
|
breq12d |
⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 17 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( ! ‘ 𝑚 ) = ( ! ‘ 𝑁 ) ) |
| 18 |
|
id |
⊢ ( 𝑚 = 𝑁 → 𝑚 = 𝑁 ) |
| 19 |
18 18
|
oveq12d |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 ↑ 𝑚 ) = ( 𝑁 ↑ 𝑁 ) ) |
| 20 |
17 19
|
breq12d |
⊢ ( 𝑚 = 𝑁 → ( ( ! ‘ 𝑚 ) ≤ ( 𝑚 ↑ 𝑚 ) ↔ ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) ) |
| 21 |
|
1le1 |
⊢ 1 ≤ 1 |
| 22 |
|
faccl |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 23 |
22
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℕ ) |
| 24 |
23
|
nnred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ∈ ℝ ) |
| 25 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 27 |
|
simpl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ∈ ℕ0 ) |
| 28 |
26 27
|
reexpcld |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 ↑ 𝑘 ) ∈ ℝ ) |
| 29 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
| 30 |
29
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℕ ) |
| 31 |
30
|
nnred |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℝ ) |
| 32 |
31 27
|
reexpcld |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( 𝑘 + 1 ) ↑ 𝑘 ) ∈ ℝ ) |
| 33 |
|
simpr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) |
| 34 |
|
nn0ge0 |
⊢ ( 𝑘 ∈ ℕ0 → 0 ≤ 𝑘 ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 0 ≤ 𝑘 ) |
| 36 |
26
|
lep1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 𝑘 ≤ ( 𝑘 + 1 ) ) |
| 37 |
|
leexp1a |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ ( 𝑘 + 1 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) ∧ ( 0 ≤ 𝑘 ∧ 𝑘 ≤ ( 𝑘 + 1 ) ) ) → ( 𝑘 ↑ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
| 38 |
26 31 27 35 36 37
|
syl32anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 ↑ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
| 39 |
24 28 32 33 38
|
letrd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ) |
| 40 |
30
|
nngt0d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → 0 < ( 𝑘 + 1 ) ) |
| 41 |
|
lemul1 |
⊢ ( ( ( ! ‘ 𝑘 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ∈ ℝ ∧ ( ( 𝑘 + 1 ) ∈ ℝ ∧ 0 < ( 𝑘 + 1 ) ) ) → ( ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ↔ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 42 |
24 32 31 40 41
|
syl112anc |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) ≤ ( ( 𝑘 + 1 ) ↑ 𝑘 ) ↔ ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) ) |
| 43 |
39 42
|
mpbid |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ≤ ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 44 |
|
facp1 |
⊢ ( 𝑘 ∈ ℕ0 → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ ( 𝑘 + 1 ) ) = ( ( ! ‘ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 46 |
30
|
nncnd |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( 𝑘 + 1 ) ∈ ℂ ) |
| 47 |
46 27
|
expp1d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) = ( ( ( 𝑘 + 1 ) ↑ 𝑘 ) · ( 𝑘 + 1 ) ) ) |
| 48 |
43 45 47
|
3brtr4d |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) ) → ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) |
| 49 |
48
|
ex |
⊢ ( 𝑘 ∈ ℕ0 → ( ( ! ‘ 𝑘 ) ≤ ( 𝑘 ↑ 𝑘 ) → ( ! ‘ ( 𝑘 + 1 ) ) ≤ ( ( 𝑘 + 1 ) ↑ ( 𝑘 + 1 ) ) ) ) |
| 50 |
8 12 16 20 21 49
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ≤ ( 𝑁 ↑ 𝑁 ) ) |