| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|
| 2 |
|
fac0 |
|
| 3 |
1 2
|
eqtrdi |
|
| 4 |
|
id |
|
| 5 |
4 4
|
oveq12d |
|
| 6 |
|
0exp0e1 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
3 7
|
breq12d |
|
| 9 |
|
fveq2 |
|
| 10 |
|
id |
|
| 11 |
10 10
|
oveq12d |
|
| 12 |
9 11
|
breq12d |
|
| 13 |
|
fveq2 |
|
| 14 |
|
id |
|
| 15 |
14 14
|
oveq12d |
|
| 16 |
13 15
|
breq12d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
id |
|
| 19 |
18 18
|
oveq12d |
|
| 20 |
17 19
|
breq12d |
|
| 21 |
|
1le1 |
|
| 22 |
|
faccl |
|
| 23 |
22
|
adantr |
|
| 24 |
23
|
nnred |
|
| 25 |
|
nn0re |
|
| 26 |
25
|
adantr |
|
| 27 |
|
simpl |
|
| 28 |
26 27
|
reexpcld |
|
| 29 |
|
nn0p1nn |
|
| 30 |
29
|
adantr |
|
| 31 |
30
|
nnred |
|
| 32 |
31 27
|
reexpcld |
|
| 33 |
|
simpr |
|
| 34 |
|
nn0ge0 |
|
| 35 |
34
|
adantr |
|
| 36 |
26
|
lep1d |
|
| 37 |
|
leexp1a |
|
| 38 |
26 31 27 35 36 37
|
syl32anc |
|
| 39 |
24 28 32 33 38
|
letrd |
|
| 40 |
30
|
nngt0d |
|
| 41 |
|
lemul1 |
|
| 42 |
24 32 31 40 41
|
syl112anc |
|
| 43 |
39 42
|
mpbid |
|
| 44 |
|
facp1 |
|
| 45 |
44
|
adantr |
|
| 46 |
30
|
nncnd |
|
| 47 |
46 27
|
expp1d |
|
| 48 |
43 45 47
|
3brtr4d |
|
| 49 |
48
|
ex |
|
| 50 |
8 12 16 20 21 49
|
nn0ind |
|