Step |
Hyp |
Ref |
Expression |
1 |
|
nn0readdcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℝ ) |
2 |
1
|
rehalfcld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ) |
3 |
|
flle |
⊢ ( ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) |
4 |
2 3
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) |
5 |
|
reflcl |
⊢ ( ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ) |
6 |
2 5
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ) |
7 |
|
nn0re |
⊢ ( 𝑀 ∈ ℕ0 → 𝑀 ∈ ℝ ) |
8 |
7
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℝ ) |
9 |
|
letr |
⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) ) |
10 |
6 2 8 9
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) ) |
11 |
4 10
|
mpand |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) ) |
12 |
|
nn0addcl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℕ0 ) |
13 |
12
|
nn0ge0d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( 𝑀 + 𝑁 ) ) |
14 |
|
halfnneg2 |
⊢ ( ( 𝑀 + 𝑁 ) ∈ ℝ → ( 0 ≤ ( 𝑀 + 𝑁 ) ↔ 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) |
15 |
1 14
|
syl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 0 ≤ ( 𝑀 + 𝑁 ) ↔ 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) |
16 |
13 15
|
mpbid |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) |
17 |
|
flge0nn0 |
⊢ ( ( ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ) |
18 |
2 16 17
|
syl2anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ) |
19 |
|
simpl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑀 ∈ ℕ0 ) |
20 |
|
facwordi |
⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ∧ 𝑀 ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ) |
21 |
20
|
3exp |
⊢ ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 → ( 𝑀 ∈ ℕ0 → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ) ) ) |
22 |
18 19 21
|
sylc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑀 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ) ) |
23 |
|
faccl |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ ) |
24 |
23
|
nncnd |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℂ ) |
25 |
24
|
mulid1d |
⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) · 1 ) = ( ! ‘ 𝑀 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · 1 ) = ( ! ‘ 𝑀 ) ) |
27 |
|
faccl |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ ) |
28 |
27
|
nnred |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℝ ) |
29 |
28
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑁 ) ∈ ℝ ) |
30 |
23
|
nnred |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℝ ) |
31 |
23
|
nnnn0d |
⊢ ( 𝑀 ∈ ℕ0 → ( ! ‘ 𝑀 ) ∈ ℕ0 ) |
32 |
31
|
nn0ge0d |
⊢ ( 𝑀 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑀 ) ) |
33 |
30 32
|
jca |
⊢ ( 𝑀 ∈ ℕ0 → ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) |
34 |
33
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) |
35 |
27
|
nnge1d |
⊢ ( 𝑁 ∈ ℕ0 → 1 ≤ ( ! ‘ 𝑁 ) ) |
36 |
35
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( ! ‘ 𝑁 ) ) |
37 |
|
1re |
⊢ 1 ∈ ℝ |
38 |
|
lemul2a |
⊢ ( ( ( 1 ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑁 ) ) → ( ( ! ‘ 𝑀 ) · 1 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
39 |
37 38
|
mp3anl1 |
⊢ ( ( ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑀 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑁 ) ) → ( ( ! ‘ 𝑀 ) · 1 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
40 |
29 34 36 39
|
syl21anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · 1 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
41 |
26 40
|
eqbrtrrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
42 |
18
|
faccld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℕ ) |
43 |
42
|
nnred |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℝ ) |
44 |
30
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑀 ) ∈ ℝ ) |
45 |
|
remulcl |
⊢ ( ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ) → ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) |
46 |
30 28 45
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) |
47 |
|
letr |
⊢ ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℝ ∧ ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ∧ ( ! ‘ 𝑀 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
48 |
43 44 46 47
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) ∧ ( ! ‘ 𝑀 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
49 |
41 48
|
mpan2d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑀 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
50 |
11 22 49
|
3syld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
51 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
52 |
51
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℝ ) |
53 |
|
letr |
⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) ) |
54 |
6 2 52 53
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ ( ( 𝑀 + 𝑁 ) / 2 ) ∧ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) ) |
55 |
4 54
|
mpand |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 → ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) ) |
56 |
|
simpr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
57 |
|
facwordi |
⊢ ( ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ) |
58 |
57
|
3exp |
⊢ ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ∈ ℕ0 → ( 𝑁 ∈ ℕ0 → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ) ) ) |
59 |
18 56 58
|
sylc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ≤ 𝑁 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ) ) |
60 |
27
|
nncnd |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℂ ) |
61 |
60
|
mulid2d |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
62 |
61
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( ! ‘ 𝑁 ) ) = ( ! ‘ 𝑁 ) ) |
63 |
27
|
nnnn0d |
⊢ ( 𝑁 ∈ ℕ0 → ( ! ‘ 𝑁 ) ∈ ℕ0 ) |
64 |
63
|
nn0ge0d |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( ! ‘ 𝑁 ) ) |
65 |
28 64
|
jca |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) |
67 |
23
|
nnge1d |
⊢ ( 𝑀 ∈ ℕ0 → 1 ≤ ( ! ‘ 𝑀 ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → 1 ≤ ( ! ‘ 𝑀 ) ) |
69 |
|
lemul1a |
⊢ ( ( ( 1 ∈ ℝ ∧ ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑀 ) ) → ( 1 · ( ! ‘ 𝑁 ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
70 |
37 69
|
mp3anl1 |
⊢ ( ( ( ( ! ‘ 𝑀 ) ∈ ℝ ∧ ( ( ! ‘ 𝑁 ) ∈ ℝ ∧ 0 ≤ ( ! ‘ 𝑁 ) ) ) ∧ 1 ≤ ( ! ‘ 𝑀 ) ) → ( 1 · ( ! ‘ 𝑁 ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
71 |
44 66 68 70
|
syl21anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( ! ‘ 𝑁 ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
72 |
62 71
|
eqbrtrrd |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ 𝑁 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |
73 |
|
letr |
⊢ ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ∈ ℝ ∧ ( ! ‘ 𝑁 ) ∈ ℝ ∧ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ∈ ℝ ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ∧ ( ! ‘ 𝑁 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
74 |
43 29 46 73
|
syl3anc |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) ∧ ( ! ‘ 𝑁 ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
75 |
72 74
|
mpan2d |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ! ‘ 𝑁 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
76 |
55 59 75
|
3syld |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) ) |
77 |
|
avgle |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ∨ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) ) |
78 |
7 51 77
|
syl2an |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑀 ∨ ( ( 𝑀 + 𝑁 ) / 2 ) ≤ 𝑁 ) ) |
79 |
50 76 78
|
mpjaod |
⊢ ( ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ! ‘ ( ⌊ ‘ ( ( 𝑀 + 𝑁 ) / 2 ) ) ) ≤ ( ( ! ‘ 𝑀 ) · ( ! ‘ 𝑁 ) ) ) |