Step |
Hyp |
Ref |
Expression |
1 |
|
rlimsqz.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
2 |
|
rlimsqz.m |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
3 |
|
rlimsqz.l |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ⇝𝑟 𝐷 ) |
4 |
|
rlimsqz.b |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
5 |
|
rlimsqz.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
6 |
|
rlimsqz2.1 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ≤ 𝐵 ) |
7 |
|
rlimsqz2.2 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐷 ≤ 𝐶 ) |
8 |
1
|
recnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
9 |
4
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
10 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
11 |
5
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐶 ∈ ℝ ) |
12 |
4
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐵 ∈ ℝ ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐷 ∈ ℝ ) |
14 |
11 12 13 6
|
lesub1dd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( 𝐶 − 𝐷 ) ≤ ( 𝐵 − 𝐷 ) ) |
15 |
13 11 7
|
abssubge0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) = ( 𝐶 − 𝐷 ) ) |
16 |
13 11 12 7 6
|
letrd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → 𝐷 ≤ 𝐵 ) |
17 |
13 12 16
|
abssubge0d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐵 − 𝐷 ) ) = ( 𝐵 − 𝐷 ) ) |
18 |
14 15 17
|
3brtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑀 ≤ 𝑥 ) ) → ( abs ‘ ( 𝐶 − 𝐷 ) ) ≤ ( abs ‘ ( 𝐵 − 𝐷 ) ) ) |
19 |
2 8 3 9 10 18
|
rlimsqzlem |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ⇝𝑟 𝐷 ) |