Metamath Proof Explorer


Theorem pnt3

Description: The Prime Number Theorem, version 3: the second Chebyshev function tends asymptotically to x . (Contributed by Mario Carneiro, 1-Jun-2016)

Ref Expression
Assertion pnt3 x + ψ x x 1

Proof

Step Hyp Ref Expression
1 eqid a + ψ a a = a + ψ a a
2 1 pntrmax b + r + a + ψ a a r r b
3 1 pntibnd c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e
4 simpll b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e b +
5 simplr b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e r + a + ψ a a r r b
6 fveq2 r = x a + ψ a a r = a + ψ a a x
7 id r = x r = x
8 6 7 oveq12d r = x a + ψ a a r r = a + ψ a a x x
9 8 fveq2d r = x a + ψ a a r r = a + ψ a a x x
10 9 breq1d r = x a + ψ a a r r b a + ψ a a x x b
11 10 cbvralvw r + a + ψ a a r r b x + a + ψ a a x x b
12 5 11 sylib b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e x + a + ψ a a x x b
13 simprll b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e c +
14 simprlr b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e l 0 1
15 eqid b + 1 = b + 1
16 eqid 1 1 b + 1 l 32 c b + 1 2 = 1 1 b + 1 l 32 c b + 1 2
17 simprr b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e
18 breq2 z = g y < z y < g
19 oveq2 z = g 1 + l e z = 1 + l e g
20 19 breq1d z = g 1 + l e z < k y 1 + l e g < k y
21 18 20 anbi12d z = g y < z 1 + l e z < k y y < g 1 + l e g < k y
22 id z = g z = g
23 22 19 oveq12d z = g z 1 + l e z = g 1 + l e g
24 23 raleqdv z = g u z 1 + l e z a + ψ a a u u e u g 1 + l e g a + ψ a a u u e
25 21 24 anbi12d z = g y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e y < g 1 + l e g < k y u g 1 + l e g a + ψ a a u u e
26 25 cbvrexvw z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e g + y < g 1 + l e g < k y u g 1 + l e g a + ψ a a u u e
27 breq1 y = f y < g f < g
28 oveq2 y = f k y = k f
29 28 breq2d y = f 1 + l e g < k y 1 + l e g < k f
30 27 29 anbi12d y = f y < g 1 + l e g < k y f < g 1 + l e g < k f
31 30 anbi1d y = f y < g 1 + l e g < k y u g 1 + l e g a + ψ a a u u e f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
32 31 rexbidv y = f g + y < g 1 + l e g < k y u g 1 + l e g a + ψ a a u u e g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
33 26 32 syl5bb y = f z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
34 33 cbvralvw y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e f r +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
35 oveq1 r = x r +∞ = x +∞
36 35 raleqdv r = x f r +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e f x +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
37 34 36 syl5bb r = x y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e f x +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
38 37 ralbidv r = x k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e k e c e +∞ f x +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
39 38 cbvrexvw r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e x + k e c e +∞ f x +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
40 39 ralbii e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e e 0 1 x + k e c e +∞ f x +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
41 17 40 sylib b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e e 0 1 x + k e c e +∞ f x +∞ g + f < g 1 + l e g < k f u g 1 + l e g a + ψ a a u u e
42 1 4 12 13 14 15 16 41 pntleml b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e x + ψ x x 1
43 42 expr b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e x + ψ x x 1
44 43 rexlimdvva b + r + a + ψ a a r r b c + l 0 1 e 0 1 r + k e c e +∞ y r +∞ z + y < z 1 + l e z < k y u z 1 + l e z a + ψ a a u u e x + ψ x x 1
45 3 44 mpi b + r + a + ψ a a r r b x + ψ x x 1
46 45 rexlimiva b + r + a + ψ a a r r b x + ψ x x 1
47 2 46 ax-mp x + ψ x x 1