| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem3.r |
|
| 2 |
|
pntlem3.a |
|
| 3 |
|
pntlem3.A |
|
| 4 |
|
pntlemp.b |
|
| 5 |
|
pntlemp.l |
|
| 6 |
|
pntlemp.d |
|
| 7 |
|
pntlemp.f |
|
| 8 |
|
pntlemp.K |
|
| 9 |
|
eqid |
|
| 10 |
1 2 4 5 6 7
|
pntlemd |
|
| 11 |
10
|
simp3d |
|
| 12 |
|
0m0e0 |
|
| 13 |
|
simpr |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
3nn |
|
| 16 |
|
0exp |
|
| 17 |
15 16
|
ax-mp |
|
| 18 |
14 17
|
eqtrdi |
|
| 19 |
18
|
oveq2d |
|
| 20 |
11
|
rpcnd |
|
| 21 |
20
|
mul01d |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
19 22
|
eqtrd |
|
| 24 |
13 23
|
oveq12d |
|
| 25 |
12 24 13
|
3eqtr4a |
|
| 26 |
|
simplr |
|
| 27 |
25 26
|
eqeltrd |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
raleqdv |
|
| 30 |
29
|
cbvrexvw |
|
| 31 |
|
simplrr |
|
| 32 |
|
0re |
|
| 33 |
2
|
ad2antrr |
|
| 34 |
33
|
rpred |
|
| 35 |
|
elicc2 |
|
| 36 |
32 34 35
|
sylancr |
|
| 37 |
31 36
|
mpbid |
|
| 38 |
37
|
simp1d |
|
| 39 |
11
|
ad2antrr |
|
| 40 |
37
|
simp2d |
|
| 41 |
|
simplrl |
|
| 42 |
38 40 41
|
ne0gt0d |
|
| 43 |
38 42
|
elrpd |
|
| 44 |
|
3z |
|
| 45 |
|
rpexpcl |
|
| 46 |
43 44 45
|
sylancl |
|
| 47 |
39 46
|
rpmulcld |
|
| 48 |
47
|
rpred |
|
| 49 |
38 48
|
resubcld |
|
| 50 |
3
|
ad2antrr |
|
| 51 |
4
|
ad2antrr |
|
| 52 |
5
|
ad2antrr |
|
| 53 |
8
|
ad2antrr |
|
| 54 |
37
|
simp3d |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
|
simprl |
|
| 58 |
|
1rp |
|
| 59 |
|
rpaddcl |
|
| 60 |
57 58 59
|
sylancl |
|
| 61 |
57
|
rpge0d |
|
| 62 |
|
1re |
|
| 63 |
57
|
rpred |
|
| 64 |
|
addge02 |
|
| 65 |
62 63 64
|
sylancr |
|
| 66 |
61 65
|
mpbid |
|
| 67 |
60 66
|
jca |
|
| 68 |
57
|
rpxrd |
|
| 69 |
63
|
lep1d |
|
| 70 |
|
df-ico |
|
| 71 |
|
xrletr |
|
| 72 |
70 70 71
|
ixxss1 |
|
| 73 |
68 69 72
|
syl2anc |
|
| 74 |
|
simprr |
|
| 75 |
|
ssralv |
|
| 76 |
73 74 75
|
sylc |
|
| 77 |
1 33 50 51 52 6 7 53 43 54 55 56 67 76
|
pntlemp |
|
| 78 |
|
rpre |
|
| 79 |
78
|
adantl |
|
| 80 |
79
|
leidd |
|
| 81 |
|
elicopnf |
|
| 82 |
79 81
|
syl |
|
| 83 |
79 80 82
|
mpbir2and |
|
| 84 |
|
fveq2 |
|
| 85 |
|
id |
|
| 86 |
84 85
|
oveq12d |
|
| 87 |
86
|
fveq2d |
|
| 88 |
87
|
breq1d |
|
| 89 |
88
|
rspcv |
|
| 90 |
83 89
|
syl |
|
| 91 |
1
|
pntrf |
|
| 92 |
91
|
ffvelcdmi |
|
| 93 |
|
rerpdivcl |
|
| 94 |
92 93
|
mpancom |
|
| 95 |
94
|
adantl |
|
| 96 |
95
|
recnd |
|
| 97 |
96
|
absge0d |
|
| 98 |
96
|
abscld |
|
| 99 |
49
|
adantr |
|
| 100 |
|
letr |
|
| 101 |
32 98 99 100
|
mp3an2i |
|
| 102 |
97 101
|
mpand |
|
| 103 |
90 102
|
syld |
|
| 104 |
103
|
rexlimdva |
|
| 105 |
77 104
|
mpd |
|
| 106 |
47
|
rpge0d |
|
| 107 |
38 48
|
subge02d |
|
| 108 |
106 107
|
mpbid |
|
| 109 |
49 38 34 108 54
|
letrd |
|
| 110 |
|
elicc2 |
|
| 111 |
32 34 110
|
sylancr |
|
| 112 |
49 105 109 111
|
mpbir3and |
|
| 113 |
112 77
|
jca |
|
| 114 |
113
|
rexlimdvaa |
|
| 115 |
30 114
|
biimtrid |
|
| 116 |
115
|
anassrs |
|
| 117 |
116
|
expimpd |
|
| 118 |
|
breq2 |
|
| 119 |
118
|
rexralbidv |
|
| 120 |
119
|
elrab |
|
| 121 |
|
breq2 |
|
| 122 |
121
|
rexralbidv |
|
| 123 |
|
fveq2 |
|
| 124 |
|
id |
|
| 125 |
123 124
|
oveq12d |
|
| 126 |
125
|
fveq2d |
|
| 127 |
126
|
breq1d |
|
| 128 |
127
|
cbvralvw |
|
| 129 |
|
oveq1 |
|
| 130 |
129
|
raleqdv |
|
| 131 |
128 130
|
bitrid |
|
| 132 |
131
|
cbvrexvw |
|
| 133 |
122 132
|
bitr4di |
|
| 134 |
133
|
elrab |
|
| 135 |
117 120 134
|
3imtr4g |
|
| 136 |
135
|
imp |
|
| 137 |
136
|
an32s |
|
| 138 |
27 137
|
pm2.61dane |
|
| 139 |
1 2 3 9 11 138
|
pntlem3 |
|