Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem3.r |
|
2 |
|
pntlem3.a |
|
3 |
|
pntlem3.A |
|
4 |
|
pntlemp.b |
|
5 |
|
pntlemp.l |
|
6 |
|
pntlemp.d |
|
7 |
|
pntlemp.f |
|
8 |
|
pntlemp.K |
|
9 |
|
pntlemp.u |
|
10 |
|
pntlemp.u2 |
|
11 |
|
pntlemp.e |
|
12 |
|
pntlemp.k |
|
13 |
|
pntlemp.y |
|
14 |
|
pntlemp.U |
|
15 |
|
oveq2 |
|
16 |
15
|
fveq2d |
|
17 |
16 12
|
eqtr4di |
|
18 |
17
|
oveq1d |
|
19 |
|
oveq2 |
|
20 |
19
|
oveq2d |
|
21 |
20
|
oveq1d |
|
22 |
21
|
breq1d |
|
23 |
22
|
anbi2d |
|
24 |
21
|
oveq2d |
|
25 |
|
breq2 |
|
26 |
24 25
|
raleqbidv |
|
27 |
23 26
|
anbi12d |
|
28 |
27
|
rexbidv |
|
29 |
28
|
ralbidv |
|
30 |
18 29
|
raleqbidv |
|
31 |
30
|
rexbidv |
|
32 |
|
oveq1 |
|
33 |
32
|
raleqdv |
|
34 |
33
|
ralbidv |
|
35 |
34
|
cbvrexvw |
|
36 |
31 35
|
bitrdi |
|
37 |
1 2 4 5 6 7 9 10 11 12
|
pntlemc |
|
38 |
37
|
simp3d |
|
39 |
38
|
simp1d |
|
40 |
36 8 39
|
rspcdva |
|
41 |
13
|
simpld |
|
42 |
41
|
rpred |
|
43 |
13
|
simprd |
|
44 |
1
|
pntrlog2bnd |
|
45 |
42 43 44
|
syl2anc |
|
46 |
|
reeanv |
|
47 |
2
|
adantr |
|
48 |
4
|
adantr |
|
49 |
5
|
adantr |
|
50 |
9
|
adantr |
|
51 |
10
|
adantr |
|
52 |
13
|
adantr |
|
53 |
|
simpl |
|
54 |
|
rpaddcl |
|
55 |
41 53 54
|
syl2an |
|
56 |
|
ltaddrp |
|
57 |
42 53 56
|
syl2an |
|
58 |
55 57
|
jca |
|
59 |
58
|
adantrr |
|
60 |
|
simprlr |
|
61 |
|
eqid |
|
62 |
14
|
adantr |
|
63 |
|
rpxr |
|
64 |
63
|
ad2antrl |
|
65 |
|
rpre |
|
66 |
65
|
ad2antrl |
|
67 |
55
|
rpred |
|
68 |
41
|
adantr |
|
69 |
66 68
|
ltaddrp2d |
|
70 |
66 67 69
|
ltled |
|
71 |
|
iooss1 |
|
72 |
64 70 71
|
syl2anc |
|
73 |
72
|
adantrr |
|
74 |
|
simprrl |
|
75 |
|
ssralv |
|
76 |
75
|
ralimdv |
|
77 |
73 74 76
|
sylc |
|
78 |
|
simprrr |
|
79 |
1 47 48 49 6 7 50 51 11 12 52 59 60 61 62 77 78
|
pntleme |
|
80 |
79
|
expr |
|
81 |
80
|
rexlimdvva |
|
82 |
46 81
|
syl5bir |
|
83 |
40 45 82
|
mp2and |
|