| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
|
| 2 |
|
rpssre |
|
| 3 |
2
|
a1i |
|
| 4 |
|
1red |
|
| 5 |
1
|
pntrval |
|
| 6 |
|
rpre |
|
| 7 |
|
chpcl |
|
| 8 |
6 7
|
syl |
|
| 9 |
8 6
|
resubcld |
|
| 10 |
5 9
|
eqeltrd |
|
| 11 |
|
rerpdivcl |
|
| 12 |
10 11
|
mpancom |
|
| 13 |
12
|
recnd |
|
| 14 |
13
|
adantl |
|
| 15 |
5
|
oveq1d |
|
| 16 |
8
|
recnd |
|
| 17 |
|
rpcn |
|
| 18 |
|
rpne0 |
|
| 19 |
16 17 17 18
|
divsubdird |
|
| 20 |
17 18
|
dividd |
|
| 21 |
20
|
oveq2d |
|
| 22 |
15 19 21
|
3eqtrd |
|
| 23 |
22
|
mpteq2ia |
|
| 24 |
|
rerpdivcl |
|
| 25 |
8 24
|
mpancom |
|
| 26 |
25
|
adantl |
|
| 27 |
|
1red |
|
| 28 |
|
chpo1ub |
|
| 29 |
28
|
a1i |
|
| 30 |
|
ax-1cn |
|
| 31 |
|
o1const |
|
| 32 |
2 30 31
|
mp2an |
|
| 33 |
32
|
a1i |
|
| 34 |
26 27 29 33
|
o1sub2 |
|
| 35 |
23 34
|
eqeltrid |
|
| 36 |
|
chpcl |
|
| 37 |
|
peano2re |
|
| 38 |
36 37
|
syl |
|
| 39 |
38
|
ad2antrl |
|
| 40 |
22
|
3ad2ant1 |
|
| 41 |
40
|
fveq2d |
|
| 42 |
|
1re |
|
| 43 |
38
|
3ad2ant2 |
|
| 44 |
|
resubcl |
|
| 45 |
42 43 44
|
sylancr |
|
| 46 |
|
0red |
|
| 47 |
25
|
3ad2ant1 |
|
| 48 |
|
chpge0 |
|
| 49 |
48
|
3ad2ant2 |
|
| 50 |
36
|
3ad2ant2 |
|
| 51 |
|
addge02 |
|
| 52 |
42 50 51
|
sylancr |
|
| 53 |
49 52
|
mpbid |
|
| 54 |
|
suble0 |
|
| 55 |
42 43 54
|
sylancr |
|
| 56 |
53 55
|
mpbird |
|
| 57 |
8
|
3ad2ant1 |
|
| 58 |
6
|
3ad2ant1 |
|
| 59 |
|
chpge0 |
|
| 60 |
58 59
|
syl |
|
| 61 |
|
rpregt0 |
|
| 62 |
61
|
3ad2ant1 |
|
| 63 |
|
divge0 |
|
| 64 |
57 60 62 63
|
syl21anc |
|
| 65 |
45 46 47 56 64
|
letrd |
|
| 66 |
|
2re |
|
| 67 |
|
readdcl |
|
| 68 |
50 66 67
|
sylancl |
|
| 69 |
|
1red |
|
| 70 |
58
|
adantr |
|
| 71 |
|
1red |
|
| 72 |
66
|
a1i |
|
| 73 |
|
simpr |
|
| 74 |
|
1lt2 |
|
| 75 |
74
|
a1i |
|
| 76 |
70 71 72 73 75
|
lelttrd |
|
| 77 |
|
chpeq0 |
|
| 78 |
70 77
|
syl |
|
| 79 |
76 78
|
mpbird |
|
| 80 |
79
|
oveq1d |
|
| 81 |
|
simp1 |
|
| 82 |
81
|
rpcnne0d |
|
| 83 |
|
div0 |
|
| 84 |
82 83
|
syl |
|
| 85 |
84 49
|
eqbrtrd |
|
| 86 |
85
|
adantr |
|
| 87 |
80 86
|
eqbrtrd |
|
| 88 |
47
|
adantr |
|
| 89 |
57
|
adantr |
|
| 90 |
50
|
adantr |
|
| 91 |
|
0lt1 |
|
| 92 |
91
|
a1i |
|
| 93 |
|
lediv2a |
|
| 94 |
93
|
ex |
|
| 95 |
69 92 62 57 60 94
|
syl212anc |
|
| 96 |
95
|
imp |
|
| 97 |
89
|
recnd |
|
| 98 |
97
|
div1d |
|
| 99 |
96 98
|
breqtrd |
|
| 100 |
|
simp2 |
|
| 101 |
|
ltle |
|
| 102 |
6 101
|
sylan |
|
| 103 |
102
|
3impia |
|
| 104 |
|
chpwordi |
|
| 105 |
58 100 103 104
|
syl3anc |
|
| 106 |
105
|
adantr |
|
| 107 |
88 89 90 99 106
|
letrd |
|
| 108 |
58 69 87 107
|
lecasei |
|
| 109 |
|
2nn0 |
|
| 110 |
|
nn0addge1 |
|
| 111 |
50 109 110
|
sylancl |
|
| 112 |
47 50 68 108 111
|
letrd |
|
| 113 |
|
df-2 |
|
| 114 |
113
|
oveq2i |
|
| 115 |
50
|
recnd |
|
| 116 |
30
|
a1i |
|
| 117 |
115 116 116
|
add12d |
|
| 118 |
114 117
|
eqtrid |
|
| 119 |
112 118
|
breqtrd |
|
| 120 |
47 69 43
|
absdifled |
|
| 121 |
65 119 120
|
mpbir2and |
|
| 122 |
41 121
|
eqbrtrd |
|
| 123 |
122
|
3expb |
|
| 124 |
123
|
adantrlr |
|
| 125 |
124
|
adantll |
|
| 126 |
3 4 14 35 39 125
|
o1bddrp |
|
| 127 |
126
|
mptru |
|