Metamath Proof Explorer


Theorem pntrsumo1

Description: A bound on a sum over R . Equation 10.1.16 of Shapiro, p. 403. (Contributed by Mario Carneiro, 25-May-2016)

Ref Expression
Hypothesis pntrval.r R=a+ψaa
Assertion pntrsumo1 xn=1xRnnn+1𝑂1

Proof

Step Hyp Ref Expression
1 pntrval.r R=a+ψaa
2 1re 1
3 elicopnf 1x1+∞x1x
4 2 3 ax-mp x1+∞x1x
5 4 simplbi x1+∞x
6 0red x1+∞0
7 1red x1+∞1
8 0lt1 0<1
9 8 a1i x1+∞0<1
10 4 simprbi x1+∞1x
11 6 7 5 9 10 ltletrd x1+∞0<x
12 5 11 elrpd x1+∞x+
13 12 ssriv 1+∞+
14 13 a1i 1+∞+
15 rpssre +
16 14 15 sstrdi 1+∞
17 16 resmptd xn=1xRnnn+11+∞=x1+∞n=1xRnnn+1
18 chpcl xψx
19 5 18 syl x1+∞ψx
20 peano2re ψxψx+1
21 19 20 syl x1+∞ψx+1
22 12 rprege0d x1+∞x0x
23 flge0nn0 x0xx0
24 22 23 syl x1+∞x0
25 nn0p1nn x0x+1
26 24 25 syl x1+∞x+1
27 21 26 nndivred x1+∞ψx+1x+1
28 27 recnd x1+∞ψx+1x+1
29 ax-1cn 1
30 subcl ψx+1x+11ψx+1x+11
31 28 29 30 sylancl x1+∞ψx+1x+11
32 fzfid x1xFin
33 elfznn n1xn
34 33 adantl xn1xn
35 nnrp nn+
36 1 pntrf R:+
37 36 ffvelcdmi n+Rn
38 35 37 syl nRn
39 peano2nn nn+1
40 nnmulcl nn+1nn+1
41 39 40 mpdan nnn+1
42 38 41 nndivred nRnnn+1
43 34 42 syl xn1xRnnn+1
44 32 43 fsumrecl xn=1xRnnn+1
45 44 recnd xn=1xRnnn+1
46 5 45 syl x1+∞n=1xRnnn+1
47 oveq2 m=n1m=1n
48 fvoveq1 m=nψm1=ψn1
49 oveq1 m=nm1=n1
50 48 49 oveq12d m=nψm1m1=ψn1n1
51 47 50 jca m=n1m=1nψm1m1=ψn1n1
52 oveq2 m=n+11m=1n+1
53 fvoveq1 m=n+1ψm1=ψn+1-1
54 oveq1 m=n+1m1=n+1-1
55 53 54 oveq12d m=n+1ψm1m1=ψn+1-1n+1-1
56 52 55 jca m=n+11m=1n+1ψm1m1=ψn+1-1n+1-1
57 oveq2 m=11m=11
58 1div1e1 11=1
59 57 58 eqtrdi m=11m=1
60 oveq1 m=1m1=11
61 1m1e0 11=0
62 60 61 eqtrdi m=1m1=0
63 62 fveq2d m=1ψm1=ψ0
64 2pos 0<2
65 0re 0
66 chpeq0 0ψ0=00<2
67 65 66 ax-mp ψ0=00<2
68 64 67 mpbir ψ0=0
69 63 68 eqtrdi m=1ψm1=0
70 69 62 oveq12d m=1ψm1m1=00
71 0m0e0 00=0
72 70 71 eqtrdi m=1ψm1m1=0
73 59 72 jca m=11m=1ψm1m1=0
74 oveq2 m=x+11m=1x+1
75 fvoveq1 m=x+1ψm1=ψx+1-1
76 oveq1 m=x+1m1=x+1-1
77 75 76 oveq12d m=x+1ψm1m1=ψx+1-1x+1-1
78 74 77 jca m=x+11m=1x+1ψm1m1=ψx+1-1x+1-1
79 nnuz =1
80 26 79 eleqtrdi x1+∞x+11
81 elfznn m1x+1m
82 81 adantl x1+∞m1x+1m
83 82 nnrecred x1+∞m1x+11m
84 83 recnd x1+∞m1x+11m
85 82 nnred x1+∞m1x+1m
86 peano2rem mm1
87 85 86 syl x1+∞m1x+1m1
88 chpcl m1ψm1
89 87 88 syl x1+∞m1x+1ψm1
90 89 87 resubcld x1+∞m1x+1ψm1m1
91 90 recnd x1+∞m1x+1ψm1m1
92 51 56 73 78 80 84 91 fsumparts x1+∞n1..^x+11nψn+1-1-n+1-1-ψn1n1=1x+1ψx+1-1x+1-1-10-n1..^x+11n+11nψn+1-1n+1-1
93 5 flcld x1+∞x
94 fzval3 x1x=1..^x+1
95 93 94 syl x1+∞1x=1..^x+1
96 95 eqcomd x1+∞1..^x+1=1x
97 33 adantl x1+∞n1xn
98 97 nncnd x1+∞n1xn
99 pncan n1n+1-1=n
100 98 29 99 sylancl x1+∞n1xn+1-1=n
101 97 nnred x1+∞n1xn
102 100 101 eqeltrd x1+∞n1xn+1-1
103 chpcl n+1-1ψn+1-1
104 102 103 syl x1+∞n1xψn+1-1
105 104 recnd x1+∞n1xψn+1-1
106 102 recnd x1+∞n1xn+1-1
107 peano2rem nn1
108 101 107 syl x1+∞n1xn1
109 chpcl n1ψn1
110 108 109 syl x1+∞n1xψn1
111 110 recnd x1+∞n1xψn1
112 1cnd x1+∞n1x1
113 98 112 subcld x1+∞n1xn1
114 105 106 111 113 sub4d x1+∞n1xψn+1-1-n+1-1-ψn1n1=ψn+1-1-ψn1-n+1-1-n1
115 vmacl nΛn
116 97 115 syl x1+∞n1xΛn
117 116 recnd x1+∞n1xΛn
118 nnm1nn0 nn10
119 97 118 syl x1+∞n1xn10
120 chpp1 n10ψn-1+1=ψn1+Λn-1+1
121 119 120 syl x1+∞n1xψn-1+1=ψn1+Λn-1+1
122 npcan n1n-1+1=n
123 98 29 122 sylancl x1+∞n1xn-1+1=n
124 123 100 eqtr4d x1+∞n1xn-1+1=n+1-1
125 124 fveq2d x1+∞n1xψn-1+1=ψn+1-1
126 123 fveq2d x1+∞n1xΛn-1+1=Λn
127 126 oveq2d x1+∞n1xψn1+Λn-1+1=ψn1+Λn
128 121 125 127 3eqtr3d x1+∞n1xψn+1-1=ψn1+Λn
129 111 117 128 mvrladdd x1+∞n1xψn+1-1ψn1=Λn
130 peano2cn nn+1
131 98 130 syl x1+∞n1xn+1
132 131 98 112 nnncan2d x1+∞n1xn+1-1-n1=n+1-n
133 pncan2 n1n+1-n=1
134 98 29 133 sylancl x1+∞n1xn+1-n=1
135 132 134 eqtrd x1+∞n1xn+1-1-n1=1
136 129 135 oveq12d x1+∞n1xψn+1-1-ψn1-n+1-1-n1=Λn1
137 114 136 eqtrd x1+∞n1xψn+1-1-n+1-1-ψn1n1=Λn1
138 137 oveq2d x1+∞n1x1nψn+1-1-n+1-1-ψn1n1=1nΛn1
139 peano2rem ΛnΛn1
140 116 139 syl x1+∞n1xΛn1
141 140 recnd x1+∞n1xΛn1
142 97 nnne0d x1+∞n1xn0
143 141 98 142 divrec2d x1+∞n1xΛn1n=1nΛn1
144 138 143 eqtr4d x1+∞n1x1nψn+1-1-n+1-1-ψn1n1=Λn1n
145 96 144 sumeq12rdv x1+∞n1..^x+11nψn+1-1-n+1-1-ψn1n1=n=1xΛn1n
146 24 nn0cnd x1+∞x
147 pncan x1x+1-1=x
148 146 29 147 sylancl x1+∞x+1-1=x
149 148 fveq2d x1+∞ψx+1-1=ψx
150 chpfl xψx=ψx
151 5 150 syl x1+∞ψx=ψx
152 149 151 eqtrd x1+∞ψx+1-1=ψx
153 152 oveq1d x1+∞ψx+1-1x+1-1=ψxx+1-1
154 19 recnd x1+∞ψx
155 26 nncnd x1+∞x+1
156 1cnd x1+∞1
157 154 155 156 subsub3d x1+∞ψxx+1-1=ψx+1-x+1
158 153 157 eqtrd x1+∞ψx+1-1x+1-1=ψx+1-x+1
159 158 oveq2d x1+∞1x+1ψx+1-1x+1-1=1x+1ψx+1-x+1
160 26 nnrecred x1+∞1x+1
161 160 recnd x1+∞1x+1
162 peano2cn ψxψx+1
163 154 162 syl x1+∞ψx+1
164 161 163 155 subdid x1+∞1x+1ψx+1-x+1=1x+1ψx+11x+1x+1
165 26 nnne0d x1+∞x+10
166 163 155 165 divrec2d x1+∞ψx+1x+1=1x+1ψx+1
167 166 eqcomd x1+∞1x+1ψx+1=ψx+1x+1
168 155 165 recid2d x1+∞1x+1x+1=1
169 167 168 oveq12d x1+∞1x+1ψx+11x+1x+1=ψx+1x+11
170 159 164 169 3eqtrd x1+∞1x+1ψx+1-1x+1-1=ψx+1x+11
171 29 mul01i 10=0
172 171 a1i x1+∞10=0
173 170 172 oveq12d x1+∞1x+1ψx+1-1x+1-110=ψx+1x+1-1-0
174 31 subid1d x1+∞ψx+1x+1-1-0=ψx+1x+11
175 173 174 eqtrd x1+∞1x+1ψx+1-1x+1-110=ψx+1x+11
176 97 41 syl x1+∞n1xnn+1
177 176 nnrecred x1+∞n1x1nn+1
178 177 recnd x1+∞n1x1nn+1
179 97 38 syl x1+∞n1xRn
180 179 recnd x1+∞n1xRn
181 178 180 mulneg1d x1+∞n1x1nn+1Rn=1nn+1Rn
182 98 112 mulcld x1+∞n1xn1
183 98 131 mulcld x1+∞n1xnn+1
184 176 nnne0d x1+∞n1xnn+10
185 131 182 183 184 divsubdird x1+∞n1xn+1-n1nn+1=n+1nn+1n1nn+1
186 98 mulridd x1+∞n1xn1=n
187 186 oveq2d x1+∞n1xn+1-n1=n+1-n
188 187 134 eqtrd x1+∞n1xn+1-n1=1
189 188 oveq1d x1+∞n1xn+1-n1nn+1=1nn+1
190 131 mulridd x1+∞n1xn+11=n+1
191 131 98 mulcomd x1+∞n1xn+1n=nn+1
192 190 191 oveq12d x1+∞n1xn+11n+1n=n+1nn+1
193 97 39 syl x1+∞n1xn+1
194 193 nnne0d x1+∞n1xn+10
195 112 98 131 142 194 divcan5d x1+∞n1xn+11n+1n=1n
196 192 195 eqtr3d x1+∞n1xn+1nn+1=1n
197 112 131 98 194 142 divcan5d x1+∞n1xn1nn+1=1n+1
198 196 197 oveq12d x1+∞n1xn+1nn+1n1nn+1=1n1n+1
199 185 189 198 3eqtr3d x1+∞n1x1nn+1=1n1n+1
200 199 negeqd x1+∞n1x1nn+1=1n1n+1
201 97 nnrecred x1+∞n1x1n
202 201 recnd x1+∞n1x1n
203 193 nnrecred x1+∞n1x1n+1
204 203 recnd x1+∞n1x1n+1
205 202 204 negsubdi2d x1+∞n1x1n1n+1=1n+11n
206 200 205 eqtr2d x1+∞n1x1n+11n=1nn+1
207 97 nnrpd x1+∞n1xn+
208 100 207 eqeltrd x1+∞n1xn+1-1+
209 1 pntrval n+1-1+Rn+1-1=ψn+1-1n+1-1
210 208 209 syl x1+∞n1xRn+1-1=ψn+1-1n+1-1
211 100 fveq2d x1+∞n1xRn+1-1=Rn
212 210 211 eqtr3d x1+∞n1xψn+1-1n+1-1=Rn
213 206 212 oveq12d x1+∞n1x1n+11nψn+1-1n+1-1=1nn+1Rn
214 180 183 184 divrec2d x1+∞n1xRnnn+1=1nn+1Rn
215 214 negeqd x1+∞n1xRnnn+1=1nn+1Rn
216 181 213 215 3eqtr4d x1+∞n1x1n+11nψn+1-1n+1-1=Rnnn+1
217 96 216 sumeq12rdv x1+∞n1..^x+11n+11nψn+1-1n+1-1=n=1xRnnn+1
218 fzfid x1+∞1xFin
219 97 42 syl x1+∞n1xRnnn+1
220 219 recnd x1+∞n1xRnnn+1
221 218 220 fsumneg x1+∞n=1xRnnn+1=n=1xRnnn+1
222 217 221 eqtrd x1+∞n1..^x+11n+11nψn+1-1n+1-1=n=1xRnnn+1
223 175 222 oveq12d x1+∞1x+1ψx+1-1x+1-1-10-n1..^x+11n+11nψn+1-1n+1-1=ψx+1x+1-1-n=1xRnnn+1
224 92 145 223 3eqtr3d x1+∞n=1xΛn1n=ψx+1x+1-1-n=1xRnnn+1
225 31 46 subnegd x1+∞ψx+1x+1-1-n=1xRnnn+1=ψx+1x+1-1+n=1xRnnn+1
226 224 225 eqtrd x1+∞n=1xΛn1n=ψx+1x+1-1+n=1xRnnn+1
227 31 46 226 mvrladdd x1+∞n=1xΛn1nψx+1x+11=n=1xRnnn+1
228 227 mpteq2ia x1+∞n=1xΛn1nψx+1x+11=x1+∞n=1xRnnn+1
229 fzfid x+1xFin
230 33 adantl x+n1xn
231 230 115 syl x+n1xΛn
232 231 139 syl x+n1xΛn1
233 232 230 nndivred x+n1xΛn1n
234 229 233 fsumrecl x+n=1xΛn1n
235 rpre x+x
236 235 adantl x+x
237 236 18 syl x+ψx
238 237 20 syl x+ψx+1
239 rprege0 x+x0x
240 239 23 syl x+x0
241 240 adantl x+x0
242 241 25 syl x+x+1
243 238 242 nndivred x+ψx+1x+1
244 peano2rem ψx+1x+1ψx+1x+11
245 243 244 syl x+ψx+1x+11
246 reex V
247 246 15 ssexi +V
248 247 a1i +V
249 231 230 nndivred x+n1xΛnn
250 249 recnd x+n1xΛnn
251 229 250 fsumcl x+n=1xΛnn
252 relogcl x+logx
253 252 adantl x+logx
254 253 recnd x+logx
255 251 254 subcld x+n=1xΛnnlogx
256 230 nnrecred x+n1x1n
257 229 256 fsumrecl x+n=1x1n
258 257 253 resubcld x+n=1x1nlogx
259 eqidd x+n=1xΛnnlogx=x+n=1xΛnnlogx
260 eqidd x+n=1x1nlogx=x+n=1x1nlogx
261 248 255 258 259 260 offval2 x+n=1xΛnnlogxfx+n=1x1nlogx=x+n=1xΛnn-logx-n=1x1nlogx
262 256 recnd x+n1x1n
263 229 250 262 fsumsub x+n=1xΛnn1n=n=1xΛnnn=1x1n
264 231 recnd x+n1xΛn
265 1cnd x+n1x1
266 230 nncnd x+n1xn
267 230 nnne0d x+n1xn0
268 264 265 266 267 divsubdird x+n1xΛn1n=Λnn1n
269 268 sumeq2dv x+n=1xΛn1n=n=1xΛnn1n
270 257 recnd x+n=1x1n
271 251 270 254 nnncan2d x+n=1xΛnn-logx-n=1x1nlogx=n=1xΛnnn=1x1n
272 263 269 271 3eqtr4rd x+n=1xΛnn-logx-n=1x1nlogx=n=1xΛn1n
273 272 mpteq2dva x+n=1xΛnn-logx-n=1x1nlogx=x+n=1xΛn1n
274 261 273 eqtrd x+n=1xΛnnlogxfx+n=1x1nlogx=x+n=1xΛn1n
275 vmadivsum x+n=1xΛnnlogx𝑂1
276 15 a1i +
277 258 recnd x+n=1x1nlogx
278 1red 1
279 harmoniclbnd x+logxn=1x1n
280 279 adantl x+logxn=1x1n
281 253 257 280 abssubge0d x+n=1x1nlogx=n=1x1nlogx
282 281 adantrr x+1xn=1x1nlogx=n=1x1nlogx
283 235 ad2antrl x+1xx
284 simprr x+1x1x
285 harmonicubnd x1xn=1x1nlogx+1
286 283 284 285 syl2anc x+1xn=1x1nlogx+1
287 1red x+1
288 257 253 287 lesubadd2d x+n=1x1nlogx1n=1x1nlogx+1
289 288 adantrr x+1xn=1x1nlogx1n=1x1nlogx+1
290 286 289 mpbird x+1xn=1x1nlogx1
291 282 290 eqbrtrd x+1xn=1x1nlogx1
292 276 277 278 278 291 elo1d x+n=1x1nlogx𝑂1
293 o1sub x+n=1xΛnnlogx𝑂1x+n=1x1nlogx𝑂1x+n=1xΛnnlogxfx+n=1x1nlogx𝑂1
294 275 292 293 sylancr x+n=1xΛnnlogxfx+n=1x1nlogx𝑂1
295 274 294 eqeltrrd x+n=1xΛn1n𝑂1
296 243 recnd x+ψx+1x+1
297 1cnd x+1
298 237 recnd x+ψx
299 rpcnne0 x+xx0
300 299 adantl x+xx0
301 divdir ψx1xx0ψx+1x=ψxx+1x
302 298 297 300 301 syl3anc x+ψx+1x=ψxx+1x
303 302 mpteq2dva x+ψx+1x=x+ψxx+1x
304 simpr x+x+
305 237 304 rerpdivcld x+ψxx
306 rpreccl x+1x+
307 306 adantl x+1x+
308 eqidd x+ψxx=x+ψxx
309 eqidd x+1x=x+1x
310 248 305 307 308 309 offval2 x+ψxx+fx+1x=x+ψxx+1x
311 chpo1ub x+ψxx𝑂1
312 divrcnv 1x+1x0
313 29 312 ax-mp x+1x0
314 rlimo1 x+1x0x+1x𝑂1
315 313 314 mp1i x+1x𝑂1
316 o1add x+ψxx𝑂1x+1x𝑂1x+ψxx+fx+1x𝑂1
317 311 315 316 sylancr x+ψxx+fx+1x𝑂1
318 310 317 eqeltrrd x+ψxx+1x𝑂1
319 303 318 eqeltrd x+ψx+1x𝑂1
320 238 304 rerpdivcld x+ψx+1x
321 chpge0 x0ψx
322 236 321 syl x+0ψx
323 237 322 ge0p1rpd x+ψx+1+
324 323 rprege0d x+ψx+10ψx+1
325 242 nnrpd x+x+1+
326 325 rpregt0d x+x+10<x+1
327 divge0 ψx+10ψx+1x+10<x+10ψx+1x+1
328 324 326 327 syl2anc x+0ψx+1x+1
329 243 328 absidd x+ψx+1x+1=ψx+1x+1
330 320 recnd x+ψx+1x
331 330 abscld x+ψx+1x
332 fllep1 xxx+1
333 236 332 syl x+xx+1
334 rpregt0 x+x0<x
335 334 adantl x+x0<x
336 323 rpregt0d x+ψx+10<ψx+1
337 lediv2 x0<xx+10<x+1ψx+10<ψx+1xx+1ψx+1x+1ψx+1x
338 335 326 336 337 syl3anc x+xx+1ψx+1x+1ψx+1x
339 333 338 mpbid x+ψx+1x+1ψx+1x
340 320 leabsd x+ψx+1xψx+1x
341 243 320 331 339 340 letrd x+ψx+1x+1ψx+1x
342 329 341 eqbrtrd x+ψx+1x+1ψx+1x
343 342 adantrr x+1xψx+1x+1ψx+1x
344 278 319 320 296 343 o1le x+ψx+1x+1𝑂1
345 o1const +1x+1𝑂1
346 15 29 345 mp2an x+1𝑂1
347 346 a1i x+1𝑂1
348 296 297 344 347 o1sub2 x+ψx+1x+11𝑂1
349 234 245 295 348 o1sub2 x+n=1xΛn1nψx+1x+11𝑂1
350 14 349 o1res2 x1+∞n=1xΛn1nψx+1x+11𝑂1
351 228 350 eqeltrrid x1+∞n=1xRnnn+1𝑂1
352 17 351 eqeltrd xn=1xRnnn+11+∞𝑂1
353 eqid xn=1xRnnn+1=xn=1xRnnn+1
354 353 45 fmpti xn=1xRnnn+1:
355 354 a1i xn=1xRnnn+1:
356 ssidd
357 355 356 278 o1resb xn=1xRnnn+1𝑂1xn=1xRnnn+11+∞𝑂1
358 352 357 mpbird xn=1xRnnn+1𝑂1
359 358 mptru xn=1xRnnn+1𝑂1