| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0p1nn |
|
| 2 |
|
nnuz |
|
| 3 |
1 2
|
eleqtrdi |
|
| 4 |
|
elfznn |
|
| 5 |
4
|
adantl |
|
| 6 |
|
vmacl |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
recnd |
|
| 9 |
|
fveq2 |
|
| 10 |
3 8 9
|
fsumm1 |
|
| 11 |
|
nn0re |
|
| 12 |
|
peano2re |
|
| 13 |
|
chpval |
|
| 14 |
11 12 13
|
3syl |
|
| 15 |
|
nn0z |
|
| 16 |
15
|
peano2zd |
|
| 17 |
|
flid |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
oveq2d |
|
| 20 |
19
|
sumeq1d |
|
| 21 |
14 20
|
eqtrd |
|
| 22 |
|
chpval |
|
| 23 |
11 22
|
syl |
|
| 24 |
|
flid |
|
| 25 |
15 24
|
syl |
|
| 26 |
|
nn0cn |
|
| 27 |
|
ax-1cn |
|
| 28 |
|
pncan |
|
| 29 |
26 27 28
|
sylancl |
|
| 30 |
25 29
|
eqtr4d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
31
|
sumeq1d |
|
| 33 |
23 32
|
eqtrd |
|
| 34 |
33
|
oveq1d |
|
| 35 |
10 21 34
|
3eqtr4d |
|