Metamath Proof Explorer


Theorem chpp1

Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016)

Ref Expression
Assertion chpp1 A0ψA+1=ψA+ΛA+1

Proof

Step Hyp Ref Expression
1 nn0p1nn A0A+1
2 nnuz =1
3 1 2 eleqtrdi A0A+11
4 elfznn n1A+1n
5 4 adantl A0n1A+1n
6 vmacl nΛn
7 5 6 syl A0n1A+1Λn
8 7 recnd A0n1A+1Λn
9 fveq2 n=A+1Λn=ΛA+1
10 3 8 9 fsumm1 A0n=1A+1Λn=n=1A+1-1Λn+ΛA+1
11 nn0re A0A
12 peano2re AA+1
13 chpval A+1ψA+1=n=1A+1Λn
14 11 12 13 3syl A0ψA+1=n=1A+1Λn
15 nn0z A0A
16 15 peano2zd A0A+1
17 flid A+1A+1=A+1
18 16 17 syl A0A+1=A+1
19 18 oveq2d A01A+1=1A+1
20 19 sumeq1d A0n=1A+1Λn=n=1A+1Λn
21 14 20 eqtrd A0ψA+1=n=1A+1Λn
22 chpval AψA=n=1AΛn
23 11 22 syl A0ψA=n=1AΛn
24 flid AA=A
25 15 24 syl A0A=A
26 nn0cn A0A
27 ax-1cn 1
28 pncan A1A+1-1=A
29 26 27 28 sylancl A0A+1-1=A
30 25 29 eqtr4d A0A=A+1-1
31 30 oveq2d A01A=1A+1-1
32 31 sumeq1d A0n=1AΛn=n=1A+1-1Λn
33 23 32 eqtrd A0ψA=n=1A+1-1Λn
34 33 oveq1d A0ψA+ΛA+1=n=1A+1-1Λn+ΛA+1
35 10 21 34 3eqtr4d A0ψA+1=ψA+ΛA+1