Description: The second Chebyshev function at a successor. (Contributed by Mario Carneiro, 11-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | chpp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0p1nn | |
|
2 | nnuz | |
|
3 | 1 2 | eleqtrdi | |
4 | elfznn | |
|
5 | 4 | adantl | |
6 | vmacl | |
|
7 | 5 6 | syl | |
8 | 7 | recnd | |
9 | fveq2 | |
|
10 | 3 8 9 | fsumm1 | |
11 | nn0re | |
|
12 | peano2re | |
|
13 | chpval | |
|
14 | 11 12 13 | 3syl | |
15 | nn0z | |
|
16 | 15 | peano2zd | |
17 | flid | |
|
18 | 16 17 | syl | |
19 | 18 | oveq2d | |
20 | 19 | sumeq1d | |
21 | 14 20 | eqtrd | |
22 | chpval | |
|
23 | 11 22 | syl | |
24 | flid | |
|
25 | 15 24 | syl | |
26 | nn0cn | |
|
27 | ax-1cn | |
|
28 | pncan | |
|
29 | 26 27 28 | sylancl | |
30 | 25 29 | eqtr4d | |
31 | 30 | oveq2d | |
32 | 31 | sumeq1d | |
33 | 23 32 | eqtrd | |
34 | 33 | oveq1d | |
35 | 10 21 34 | 3eqtr4d | |