Metamath Proof Explorer


Theorem o1sub

Description: The difference of two eventually bounded functions is eventually bounded. (Contributed by Mario Carneiro, 15-Sep-2014) (Proof shortened by Fan Zheng, 14-Jul-2016)

Ref Expression
Assertion o1sub F𝑂1G𝑂1FfG𝑂1

Proof

Step Hyp Ref Expression
1 readdcl xyx+y
2 subcl mnmn
3 simp2l xymnmxnym
4 simp2r xymnmxnyn
5 3 4 subcld xymnmxnymn
6 5 abscld xymnmxnymn
7 3 abscld xymnmxnym
8 4 abscld xymnmxnyn
9 7 8 readdcld xymnmxnym+n
10 simp1l xymnmxnyx
11 simp1r xymnmxnyy
12 10 11 readdcld xymnmxnyx+y
13 3 4 abs2dif2d xymnmxnymnm+n
14 simp3l xymnmxnymx
15 simp3r xymnmxnyny
16 7 8 10 11 14 15 le2addd xymnmxnym+nx+y
17 6 9 12 13 16 letrd xymnmxnymnx+y
18 17 3expia xymnmxnymnx+y
19 1 2 18 o1of2 F𝑂1G𝑂1FfG𝑂1