Metamath Proof Explorer


Theorem abs2dif2d

Description: Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φA
abssubd.2 φB
Assertion abs2dif2d φABA+B

Proof

Step Hyp Ref Expression
1 abscld.1 φA
2 abssubd.2 φB
3 abs2dif2 ABABA+B
4 1 2 3 syl2anc φABA+B