Metamath Proof Explorer


Theorem o1of2

Description: Show that a binary operation preserves eventual boundedness. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Hypotheses o1of2.1 mnM
o1of2.2 xyxRy
o1of2.3 mnxyxmynxRyM
Assertion o1of2 F𝑂1G𝑂1FRfG𝑂1

Proof

Step Hyp Ref Expression
1 o1of2.1 mnM
2 o1of2.2 xyxRy
3 o1of2.3 mnxyxmynxRyM
4 o1f F𝑂1F:domF
5 o1bdd F𝑂1F:domFamzdomFazFzm
6 4 5 mpdan F𝑂1amzdomFazFzm
7 6 adantr F𝑂1G𝑂1amzdomFazFzm
8 o1f G𝑂1G:domG
9 o1bdd G𝑂1G:domGbnzdomGbzGzn
10 8 9 mpdan G𝑂1bnzdomGbzGzn
11 10 adantl F𝑂1G𝑂1bnzdomGbzGzn
12 reeanv abmzdomFazFzmnzdomGbzGznamzdomFazFzmbnzdomGbzGzn
13 reeanv mnzdomFazFzmzdomGbzGznmzdomFazFzmnzdomGbzGzn
14 inss1 domFdomGdomF
15 ssralv domFdomGdomFzdomFazFzmzdomFdomGazFzm
16 14 15 ax-mp zdomFazFzmzdomFdomGazFzm
17 inss2 domFdomGdomG
18 ssralv domFdomGdomGzdomGbzGznzdomFdomGbzGzn
19 17 18 ax-mp zdomGbzGznzdomFdomGbzGzn
20 16 19 anim12i zdomFazFzmzdomGbzGznzdomFdomGazFzmzdomFdomGbzGzn
21 r19.26 zdomFdomGazFzmbzGznzdomFdomGazFzmzdomFdomGbzGzn
22 20 21 sylibr zdomFazFzmzdomGbzGznzdomFdomGazFzmbzGzn
23 anim12 azFzmbzGznazbzFzmGzn
24 simplrl F𝑂1G𝑂1abmna
25 24 adantr F𝑂1G𝑂1abmnzdomFdomGa
26 simplrr F𝑂1G𝑂1abmnb
27 26 adantr F𝑂1G𝑂1abmnzdomFdomGb
28 o1dm F𝑂1domF
29 28 ad3antrrr F𝑂1G𝑂1abmndomF
30 14 29 sstrid F𝑂1G𝑂1abmndomFdomG
31 30 sselda F𝑂1G𝑂1abmnzdomFdomGz
32 maxle abzifabbazazbz
33 25 27 31 32 syl3anc F𝑂1G𝑂1abmnzdomFdomGifabbazazbz
34 33 biimpd F𝑂1G𝑂1abmnzdomFdomGifabbazazbz
35 4 ad3antrrr F𝑂1G𝑂1abmnF:domF
36 14 sseli zdomFdomGzdomF
37 ffvelcdm F:domFzdomFFz
38 35 36 37 syl2an F𝑂1G𝑂1abmnzdomFdomGFz
39 8 ad3antlr F𝑂1G𝑂1abmnG:domG
40 17 sseli zdomFdomGzdomG
41 ffvelcdm G:domGzdomGGz
42 39 40 41 syl2an F𝑂1G𝑂1abmnzdomFdomGGz
43 3 ralrimivva mnxyxmynxRyM
44 43 ad2antlr F𝑂1G𝑂1abmnzdomFdomGxyxmynxRyM
45 fveq2 x=Fzx=Fz
46 45 breq1d x=FzxmFzm
47 46 anbi1d x=FzxmynFzmyn
48 fvoveq1 x=FzxRy=FzRy
49 48 breq1d x=FzxRyMFzRyM
50 47 49 imbi12d x=FzxmynxRyMFzmynFzRyM
51 fveq2 y=Gzy=Gz
52 51 breq1d y=GzynGzn
53 52 anbi2d y=GzFzmynFzmGzn
54 oveq2 y=GzFzRy=FzRGz
55 54 fveq2d y=GzFzRy=FzRGz
56 55 breq1d y=GzFzRyMFzRGzM
57 53 56 imbi12d y=GzFzmynFzRyMFzmGznFzRGzM
58 50 57 rspc2va FzGzxyxmynxRyMFzmGznFzRGzM
59 38 42 44 58 syl21anc F𝑂1G𝑂1abmnzdomFdomGFzmGznFzRGzM
60 35 ffnd F𝑂1G𝑂1abmnFFndomF
61 39 ffnd F𝑂1G𝑂1abmnGFndomG
62 reex V
63 ssexg domFVdomFV
64 29 62 63 sylancl F𝑂1G𝑂1abmndomFV
65 dmexg G𝑂1domGV
66 65 ad3antlr F𝑂1G𝑂1abmndomGV
67 eqid domFdomG=domFdomG
68 eqidd F𝑂1G𝑂1abmnzdomFFz=Fz
69 eqidd F𝑂1G𝑂1abmnzdomGGz=Gz
70 60 61 64 66 67 68 69 ofval F𝑂1G𝑂1abmnzdomFdomGFRfGz=FzRGz
71 70 fveq2d F𝑂1G𝑂1abmnzdomFdomGFRfGz=FzRGz
72 71 breq1d F𝑂1G𝑂1abmnzdomFdomGFRfGzMFzRGzM
73 59 72 sylibrd F𝑂1G𝑂1abmnzdomFdomGFzmGznFRfGzM
74 34 73 imim12d F𝑂1G𝑂1abmnzdomFdomGazbzFzmGznifabbazFRfGzM
75 23 74 syl5 F𝑂1G𝑂1abmnzdomFdomGazFzmbzGznifabbazFRfGzM
76 75 ralimdva F𝑂1G𝑂1abmnzdomFdomGazFzmbzGznzdomFdomGifabbazFRfGzM
77 2 adantl F𝑂1G𝑂1abmnxyxRy
78 77 35 39 64 66 67 off F𝑂1G𝑂1abmnFRfG:domFdomG
79 26 24 ifcld F𝑂1G𝑂1abmnifabba
80 1 adantl F𝑂1G𝑂1abmnM
81 elo12r FRfG:domFdomGdomFdomGifabbaMzdomFdomGifabbazFRfGzMFRfG𝑂1
82 81 3expia FRfG:domFdomGdomFdomGifabbaMzdomFdomGifabbazFRfGzMFRfG𝑂1
83 78 30 79 80 82 syl22anc F𝑂1G𝑂1abmnzdomFdomGifabbazFRfGzMFRfG𝑂1
84 76 83 syld F𝑂1G𝑂1abmnzdomFdomGazFzmbzGznFRfG𝑂1
85 22 84 syl5 F𝑂1G𝑂1abmnzdomFazFzmzdomGbzGznFRfG𝑂1
86 85 rexlimdvva F𝑂1G𝑂1abmnzdomFazFzmzdomGbzGznFRfG𝑂1
87 13 86 biimtrrid F𝑂1G𝑂1abmzdomFazFzmnzdomGbzGznFRfG𝑂1
88 87 rexlimdvva F𝑂1G𝑂1abmzdomFazFzmnzdomGbzGznFRfG𝑂1
89 12 88 biimtrrid F𝑂1G𝑂1amzdomFazFzmbnzdomGbzGznFRfG𝑂1
90 7 11 89 mp2and F𝑂1G𝑂1FRfG𝑂1