Metamath Proof Explorer


Theorem o1bdd

Description: The defining property of an eventually bounded function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion o1bdd F𝑂1F:AxmyAxyFym

Proof

Step Hyp Ref Expression
1 simpl F𝑂1F:AF𝑂1
2 simpr F𝑂1F:AF:A
3 fdm F:AdomF=A
4 3 adantl F𝑂1F:AdomF=A
5 o1dm F𝑂1domF
6 5 adantr F𝑂1F:AdomF
7 4 6 eqsstrrd F𝑂1F:AA
8 elo12 F:AAF𝑂1xmyAxyFym
9 2 7 8 syl2anc F𝑂1F:AF𝑂1xmyAxyFym
10 1 9 mpbid F𝑂1F:AxmyAxyFym