Metamath Proof Explorer


Theorem o1f

Description: An eventually bounded function is a function. (Contributed by Mario Carneiro, 15-Sep-2014)

Ref Expression
Assertion o1f F𝑂1F:domF

Proof

Step Hyp Ref Expression
1 elo1 F𝑂1F𝑝𝑚xmydomFx+∞Fym
2 1 simplbi F𝑂1F𝑝𝑚
3 cnex V
4 reex V
5 3 4 elpm2 F𝑝𝑚F:domFdomF
6 5 simplbi F𝑝𝑚F:domF
7 2 6 syl F𝑂1F:domF