Metamath Proof Explorer


Theorem harmonicubnd

Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion harmonicubnd A 1 A m = 1 A 1 m log A + 1

Proof

Step Hyp Ref Expression
1 fzfid A 1 A 1 A Fin
2 elfznn m 1 A m
3 2 adantl A 1 A m 1 A m
4 3 nnrecred A 1 A m 1 A 1 m
5 1 4 fsumrecl A 1 A m = 1 A 1 m
6 flge1nn A 1 A A
7 6 nnrpd A 1 A A +
8 7 relogcld A 1 A log A
9 peano2re log A log A + 1
10 8 9 syl A 1 A log A + 1
11 simpl A 1 A A
12 0red A 1 A 0
13 1re 1
14 13 a1i A 1 A 1
15 0lt1 0 < 1
16 15 a1i A 1 A 0 < 1
17 simpr A 1 A 1 A
18 12 14 11 16 17 ltletrd A 1 A 0 < A
19 11 18 elrpd A 1 A A +
20 19 relogcld A 1 A log A
21 peano2re log A log A + 1
22 20 21 syl A 1 A log A + 1
23 harmonicbnd A m = 1 A 1 m log A γ 1
24 6 23 syl A 1 A m = 1 A 1 m log A γ 1
25 emre γ
26 25 13 elicc2i m = 1 A 1 m log A γ 1 m = 1 A 1 m log A γ m = 1 A 1 m log A m = 1 A 1 m log A 1
27 26 simp3bi m = 1 A 1 m log A γ 1 m = 1 A 1 m log A 1
28 24 27 syl A 1 A m = 1 A 1 m log A 1
29 5 8 14 lesubadd2d A 1 A m = 1 A 1 m log A 1 m = 1 A 1 m log A + 1
30 28 29 mpbid A 1 A m = 1 A 1 m log A + 1
31 flle A A A
32 31 adantr A 1 A A A
33 7 19 logled A 1 A A A log A log A
34 32 33 mpbid A 1 A log A log A
35 8 20 14 34 leadd1dd A 1 A log A + 1 log A + 1
36 5 10 22 30 35 letrd A 1 A m = 1 A 1 m log A + 1