Metamath Proof Explorer


Theorem harmonicbnd

Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 9-Apr-2016)

Ref Expression
Assertion harmonicbnd N m = 1 N 1 m log N γ 1

Proof

Step Hyp Ref Expression
1 oveq2 n = N 1 n = 1 N
2 1 sumeq1d n = N m = 1 n 1 m = m = 1 N 1 m
3 fveq2 n = N log n = log N
4 2 3 oveq12d n = N m = 1 n 1 m log n = m = 1 N 1 m log N
5 4 eleq1d n = N m = 1 n 1 m log n γ 1 m = 1 N 1 m log N γ 1
6 eqid n m = 1 n 1 m log n = n m = 1 n 1 m log n
7 eqid n m = 1 n 1 m log n + 1 = n m = 1 n 1 m log n + 1
8 eqid n log 1 + 1 n = n log 1 + 1 n
9 oveq2 k = n 1 k = 1 n
10 9 oveq2d k = n 1 + 1 k = 1 + 1 n
11 10 fveq2d k = n log 1 + 1 k = log 1 + 1 n
12 9 11 oveq12d k = n 1 k log 1 + 1 k = 1 n log 1 + 1 n
13 12 cbvmptv k 1 k log 1 + 1 k = n 1 n log 1 + 1 n
14 6 7 8 13 emcllem7 γ 1 log 2 1 n m = 1 n 1 m log n : γ 1 n m = 1 n 1 m log n + 1 : 1 log 2 γ
15 14 simp2i n m = 1 n 1 m log n : γ 1
16 6 fmpt n m = 1 n 1 m log n γ 1 n m = 1 n 1 m log n : γ 1
17 15 16 mpbir n m = 1 n 1 m log n γ 1
18 5 17 vtoclri N m = 1 N 1 m log N γ 1