Metamath Proof Explorer


Theorem harmonicbnd2

Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion harmonicbnd2 Nm=1N1mlogN+11log2γ

Proof

Step Hyp Ref Expression
1 oveq2 n=N1n=1N
2 1 sumeq1d n=Nm=1n1m=m=1N1m
3 fvoveq1 n=Nlogn+1=logN+1
4 2 3 oveq12d n=Nm=1n1mlogn+1=m=1N1mlogN+1
5 4 eleq1d n=Nm=1n1mlogn+11log2γm=1N1mlogN+11log2γ
6 eqid nm=1n1mlogn=nm=1n1mlogn
7 eqid nm=1n1mlogn+1=nm=1n1mlogn+1
8 eqid nlog1+1n=nlog1+1n
9 oveq2 k=n1k=1n
10 9 oveq2d k=n1+1k=1+1n
11 10 fveq2d k=nlog1+1k=log1+1n
12 9 11 oveq12d k=n1klog1+1k=1nlog1+1n
13 12 cbvmptv k1klog1+1k=n1nlog1+1n
14 6 7 8 13 emcllem7 γ1log21nm=1n1mlogn:γ1nm=1n1mlogn+1:1log2γ
15 14 simp3i nm=1n1mlogn+1:1log2γ
16 7 fmpt nm=1n1mlogn+11log2γnm=1n1mlogn+1:1log2γ
17 15 16 mpbir nm=1n1mlogn+11log2γ
18 5 17 vtoclri Nm=1N1mlogN+11log2γ