| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
|
| 2 |
|
emcl.2 |
|
| 3 |
|
emcl.3 |
|
| 4 |
|
emcl.4 |
|
| 5 |
|
nnuz |
|
| 6 |
|
1zzd |
|
| 7 |
1 2 3 4
|
emcllem6 |
|
| 8 |
7
|
simpri |
|
| 9 |
8
|
a1i |
|
| 10 |
1 2
|
emcllem1 |
|
| 11 |
10
|
simpri |
|
| 12 |
11
|
ffvelcdmi |
|
| 13 |
12
|
adantl |
|
| 14 |
5 6 9 13
|
climrecl |
|
| 15 |
|
1nn |
|
| 16 |
|
simpr |
|
| 17 |
8
|
a1i |
|
| 18 |
12
|
adantl |
|
| 19 |
1 2
|
emcllem2 |
|
| 20 |
19
|
simprd |
|
| 21 |
20
|
adantl |
|
| 22 |
5 16 17 18 21
|
climub |
|
| 23 |
22
|
ralrimiva |
|
| 24 |
|
fveq2 |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
sumeq1d |
|
| 27 |
|
1z |
|
| 28 |
|
ax-1cn |
|
| 29 |
|
oveq2 |
|
| 30 |
|
1div1e1 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
31
|
fsum1 |
|
| 33 |
27 28 32
|
mp2an |
|
| 34 |
26 33
|
eqtrdi |
|
| 35 |
|
oveq1 |
|
| 36 |
|
df-2 |
|
| 37 |
35 36
|
eqtr4di |
|
| 38 |
37
|
fveq2d |
|
| 39 |
34 38
|
oveq12d |
|
| 40 |
|
1re |
|
| 41 |
|
2rp |
|
| 42 |
|
relogcl |
|
| 43 |
41 42
|
ax-mp |
|
| 44 |
40 43
|
resubcli |
|
| 45 |
44
|
elexi |
|
| 46 |
39 2 45
|
fvmpt |
|
| 47 |
15 46
|
ax-mp |
|
| 48 |
24 47
|
eqtrdi |
|
| 49 |
48
|
breq1d |
|
| 50 |
49
|
rspcva |
|
| 51 |
15 23 50
|
sylancr |
|
| 52 |
|
fveq2 |
|
| 53 |
52
|
negeqd |
|
| 54 |
|
eqid |
|
| 55 |
|
negex |
|
| 56 |
53 54 55
|
fvmpt |
|
| 57 |
56
|
adantl |
|
| 58 |
7
|
simpli |
|
| 59 |
58
|
a1i |
|
| 60 |
|
0cnd |
|
| 61 |
|
nnex |
|
| 62 |
61
|
mptex |
|
| 63 |
62
|
a1i |
|
| 64 |
10
|
simpli |
|
| 65 |
64
|
ffvelcdmi |
|
| 66 |
65
|
adantl |
|
| 67 |
66
|
recnd |
|
| 68 |
|
fveq2 |
|
| 69 |
68
|
negeqd |
|
| 70 |
|
negex |
|
| 71 |
69 54 70
|
fvmpt |
|
| 72 |
71
|
adantl |
|
| 73 |
|
df-neg |
|
| 74 |
72 73
|
eqtrdi |
|
| 75 |
5 6 59 60 63 67 74
|
climsubc2 |
|
| 76 |
75
|
adantr |
|
| 77 |
66
|
renegcld |
|
| 78 |
72 77
|
eqeltrd |
|
| 79 |
78
|
adantlr |
|
| 80 |
19
|
simpld |
|
| 81 |
80
|
adantl |
|
| 82 |
|
peano2nn |
|
| 83 |
82
|
adantl |
|
| 84 |
64
|
ffvelcdmi |
|
| 85 |
83 84
|
syl |
|
| 86 |
85 66
|
lenegd |
|
| 87 |
81 86
|
mpbid |
|
| 88 |
|
fveq2 |
|
| 89 |
88
|
negeqd |
|
| 90 |
|
negex |
|
| 91 |
89 54 90
|
fvmpt |
|
| 92 |
83 91
|
syl |
|
| 93 |
87 72 92
|
3brtr4d |
|
| 94 |
93
|
adantlr |
|
| 95 |
5 16 76 79 94
|
climub |
|
| 96 |
57 95
|
eqbrtrrd |
|
| 97 |
|
df-neg |
|
| 98 |
96 97
|
breqtrrdi |
|
| 99 |
14
|
mptru |
|
| 100 |
64
|
ffvelcdmi |
|
| 101 |
100
|
adantl |
|
| 102 |
|
leneg |
|
| 103 |
99 101 102
|
sylancr |
|
| 104 |
98 103
|
mpbird |
|
| 105 |
104
|
ralrimiva |
|
| 106 |
|
fveq2 |
|
| 107 |
|
fveq2 |
|
| 108 |
|
log1 |
|
| 109 |
107 108
|
eqtrdi |
|
| 110 |
34 109
|
oveq12d |
|
| 111 |
|
1m0e1 |
|
| 112 |
110 111
|
eqtrdi |
|
| 113 |
40
|
elexi |
|
| 114 |
112 1 113
|
fvmpt |
|
| 115 |
15 114
|
ax-mp |
|
| 116 |
106 115
|
eqtrdi |
|
| 117 |
116
|
breq2d |
|
| 118 |
117
|
rspcva |
|
| 119 |
15 105 118
|
sylancr |
|
| 120 |
44 40
|
elicc2i |
|
| 121 |
14 51 119 120
|
syl3anbrc |
|
| 122 |
|
ffn |
|
| 123 |
64 122
|
mp1i |
|
| 124 |
16 5
|
eleqtrdi |
|
| 125 |
|
elfznn |
|
| 126 |
125
|
adantl |
|
| 127 |
126 65
|
syl |
|
| 128 |
|
elfznn |
|
| 129 |
128
|
adantl |
|
| 130 |
129 80
|
syl |
|
| 131 |
124 127 130
|
monoord2 |
|
| 132 |
131 115
|
breqtrdi |
|
| 133 |
99 40
|
elicc2i |
|
| 134 |
101 104 132 133
|
syl3anbrc |
|
| 135 |
134
|
ralrimiva |
|
| 136 |
|
ffnfv |
|
| 137 |
123 135 136
|
sylanbrc |
|
| 138 |
|
ffn |
|
| 139 |
11 138
|
mp1i |
|
| 140 |
11
|
ffvelcdmi |
|
| 141 |
140
|
adantl |
|
| 142 |
126 12
|
syl |
|
| 143 |
129 20
|
syl |
|
| 144 |
124 142 143
|
monoord |
|
| 145 |
47 144
|
eqbrtrrid |
|
| 146 |
44 99
|
elicc2i |
|
| 147 |
141 145 22 146
|
syl3anbrc |
|
| 148 |
147
|
ralrimiva |
|
| 149 |
|
ffnfv |
|
| 150 |
139 148 149
|
sylanbrc |
|
| 151 |
121 137 150
|
3jca |
|
| 152 |
151
|
mptru |
|