Metamath Proof Explorer


Theorem emcl

Description: Closure and bounds for the Euler-Mascheroni constant. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Assertion emcl γ1log21

Proof

Step Hyp Ref Expression
1 eqid nm=1n1mlogn=nm=1n1mlogn
2 eqid nm=1n1mlogn+1=nm=1n1mlogn+1
3 eqid nlog1+1n=nlog1+1n
4 oveq2 k=n1k=1n
5 4 oveq2d k=n1+1k=1+1n
6 5 fveq2d k=nlog1+1k=log1+1n
7 4 6 oveq12d k=n1klog1+1k=1nlog1+1n
8 7 cbvmptv k1klog1+1k=n1nlog1+1n
9 1 2 3 8 emcllem7 γ1log21nm=1n1mlogn:γ1nm=1n1mlogn+1:1log2γ
10 9 simp1i γ1log21