Metamath Proof Explorer


Theorem emcllem6

Description: Lemma for emcl . By the previous lemmas, F and G must approach a common limit, which is gamma by definition. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F = n m = 1 n 1 m log n
emcl.2 G = n m = 1 n 1 m log n + 1
emcl.3 H = n log 1 + 1 n
emcl.4 T = n 1 n log 1 + 1 n
Assertion emcllem6 F γ G γ

Proof

Step Hyp Ref Expression
1 emcl.1 F = n m = 1 n 1 m log n
2 emcl.2 G = n m = 1 n 1 m log n + 1
3 emcl.3 H = n log 1 + 1 n
4 emcl.4 T = n 1 n log 1 + 1 n
5 nnuz = 1
6 1zzd 1
7 oveq2 n = k 1 n = 1 k
8 7 oveq2d n = k 1 + 1 n = 1 + 1 k
9 8 fveq2d n = k log 1 + 1 n = log 1 + 1 k
10 7 9 oveq12d n = k 1 n log 1 + 1 n = 1 k log 1 + 1 k
11 ovex 1 k log 1 + 1 k V
12 10 4 11 fvmpt k T k = 1 k log 1 + 1 k
13 12 adantl k T k = 1 k log 1 + 1 k
14 nnrecre k 1 k
15 14 adantl k 1 k
16 1rp 1 +
17 nnrp k k +
18 17 rpreccld k 1 k +
19 18 adantl k 1 k +
20 rpaddcl 1 + 1 k + 1 + 1 k +
21 16 19 20 sylancr k 1 + 1 k +
22 21 relogcld k log 1 + 1 k
23 15 22 resubcld k 1 k log 1 + 1 k
24 23 recnd k 1 k log 1 + 1 k
25 1 2 3 4 emcllem5 G = seq 1 + T
26 1 2 emcllem1 F : G :
27 26 simpri G :
28 27 a1i G :
29 1 2 emcllem2 k F k + 1 F k G k G k + 1
30 29 simprd k G k G k + 1
31 30 adantl k G k G k + 1
32 1nn 1
33 26 simpli F :
34 33 ffvelrni 1 F 1
35 32 34 ax-mp F 1
36 27 ffvelrni k G k
37 36 adantl k G k
38 33 ffvelrni k F k
39 38 adantl k F k
40 35 a1i k F 1
41 fvex log 1 + 1 k V
42 9 3 41 fvmpt k H k = log 1 + 1 k
43 42 adantl k H k = log 1 + 1 k
44 1 2 3 emcllem3 k H k = F k G k
45 44 adantl k H k = F k G k
46 43 45 eqtr3d k log 1 + 1 k = F k G k
47 1re 1
48 readdcl 1 1 k 1 + 1 k
49 47 15 48 sylancr k 1 + 1 k
50 ltaddrp 1 1 k + 1 < 1 + 1 k
51 47 19 50 sylancr k 1 < 1 + 1 k
52 49 51 rplogcld k log 1 + 1 k +
53 46 52 eqeltrrd k F k G k +
54 53 rpge0d k 0 F k G k
55 39 37 subge0d k 0 F k G k G k F k
56 54 55 mpbid k G k F k
57 fveq2 x = 1 F x = F 1
58 57 breq1d x = 1 F x F 1 F 1 F 1
59 fveq2 x = k F x = F k
60 59 breq1d x = k F x F 1 F k F 1
61 fveq2 x = k + 1 F x = F k + 1
62 61 breq1d x = k + 1 F x F 1 F k + 1 F 1
63 35 leidi F 1 F 1
64 29 simpld k F k + 1 F k
65 peano2nn k k + 1
66 33 ffvelrni k + 1 F k + 1
67 65 66 syl k F k + 1
68 35 a1i k F 1
69 letr F k + 1 F k F 1 F k + 1 F k F k F 1 F k + 1 F 1
70 67 38 68 69 syl3anc k F k + 1 F k F k F 1 F k + 1 F 1
71 64 70 mpand k F k F 1 F k + 1 F 1
72 58 60 62 60 63 71 nnind k F k F 1
73 72 adantl k F k F 1
74 37 39 40 56 73 letrd k G k F 1
75 74 ralrimiva k G k F 1
76 brralrspcev F 1 k G k F 1 x k G k x
77 35 75 76 sylancr x k G k x
78 5 6 28 31 77 climsup G sup ran G <
79 25 78 eqbrtrrid seq 1 + T sup ran G <
80 climrel Rel
81 80 releldmi seq 1 + T sup ran G < seq 1 + T dom
82 79 81 syl seq 1 + T dom
83 5 6 13 24 82 isumclim2 seq 1 + T k 1 k log 1 + 1 k
84 df-em γ = k 1 k log 1 + 1 k
85 83 25 84 3brtr4g G γ
86 nnex V
87 86 mptex n m = 1 n 1 m log n V
88 1 87 eqeltri F V
89 88 a1i F V
90 1 2 3 emcllem4 H 0
91 90 a1i H 0
92 37 recnd k G k
93 39 37 resubcld k F k G k
94 45 93 eqeltrd k H k
95 94 recnd k H k
96 45 oveq2d k G k + H k = G k + F k - G k
97 39 recnd k F k
98 92 97 pncan3d k G k + F k - G k = F k
99 96 98 eqtr2d k F k = G k + H k
100 5 6 85 89 91 92 95 99 climadd F γ + 0
101 85 mptru G γ
102 climcl G γ γ
103 101 102 ax-mp γ
104 103 addid1i γ + 0 = γ
105 100 104 breqtrdi F γ
106 105 mptru F γ
107 106 101 pm3.2i F γ G γ