Metamath Proof Explorer


Theorem emcllem6

Description: Lemma for emcl . By the previous lemmas, F and G must approach a common limit, which is gamma by definition. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
emcl.3 H=nlog1+1n
emcl.4 T=n1nlog1+1n
Assertion emcllem6 FγGγ

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 emcl.3 H=nlog1+1n
4 emcl.4 T=n1nlog1+1n
5 nnuz =1
6 1zzd 1
7 oveq2 n=k1n=1k
8 7 oveq2d n=k1+1n=1+1k
9 8 fveq2d n=klog1+1n=log1+1k
10 7 9 oveq12d n=k1nlog1+1n=1klog1+1k
11 ovex 1klog1+1kV
12 10 4 11 fvmpt kTk=1klog1+1k
13 12 adantl kTk=1klog1+1k
14 nnrecre k1k
15 14 adantl k1k
16 1rp 1+
17 nnrp kk+
18 17 rpreccld k1k+
19 18 adantl k1k+
20 rpaddcl 1+1k+1+1k+
21 16 19 20 sylancr k1+1k+
22 21 relogcld klog1+1k
23 15 22 resubcld k1klog1+1k
24 23 recnd k1klog1+1k
25 1 2 3 4 emcllem5 G=seq1+T
26 1 2 emcllem1 F:G:
27 26 simpri G:
28 27 a1i G:
29 1 2 emcllem2 kFk+1FkGkGk+1
30 29 simprd kGkGk+1
31 30 adantl kGkGk+1
32 1nn 1
33 26 simpli F:
34 33 ffvelcdmi 1F1
35 32 34 ax-mp F1
36 27 ffvelcdmi kGk
37 36 adantl kGk
38 33 ffvelcdmi kFk
39 38 adantl kFk
40 35 a1i kF1
41 fvex log1+1kV
42 9 3 41 fvmpt kHk=log1+1k
43 42 adantl kHk=log1+1k
44 1 2 3 emcllem3 kHk=FkGk
45 44 adantl kHk=FkGk
46 43 45 eqtr3d klog1+1k=FkGk
47 1re 1
48 readdcl 11k1+1k
49 47 15 48 sylancr k1+1k
50 ltaddrp 11k+1<1+1k
51 47 19 50 sylancr k1<1+1k
52 49 51 rplogcld klog1+1k+
53 46 52 eqeltrrd kFkGk+
54 53 rpge0d k0FkGk
55 39 37 subge0d k0FkGkGkFk
56 54 55 mpbid kGkFk
57 fveq2 x=1Fx=F1
58 57 breq1d x=1FxF1F1F1
59 fveq2 x=kFx=Fk
60 59 breq1d x=kFxF1FkF1
61 fveq2 x=k+1Fx=Fk+1
62 61 breq1d x=k+1FxF1Fk+1F1
63 35 leidi F1F1
64 29 simpld kFk+1Fk
65 peano2nn kk+1
66 33 ffvelcdmi k+1Fk+1
67 65 66 syl kFk+1
68 35 a1i kF1
69 letr Fk+1FkF1Fk+1FkFkF1Fk+1F1
70 67 38 68 69 syl3anc kFk+1FkFkF1Fk+1F1
71 64 70 mpand kFkF1Fk+1F1
72 58 60 62 60 63 71 nnind kFkF1
73 72 adantl kFkF1
74 37 39 40 56 73 letrd kGkF1
75 74 ralrimiva kGkF1
76 brralrspcev F1kGkF1xkGkx
77 35 75 76 sylancr xkGkx
78 5 6 28 31 77 climsup GsupranG<
79 25 78 eqbrtrrid seq1+TsupranG<
80 climrel Rel
81 80 releldmi seq1+TsupranG<seq1+Tdom
82 79 81 syl seq1+Tdom
83 5 6 13 24 82 isumclim2 seq1+Tk1klog1+1k
84 df-em γ=k1klog1+1k
85 83 25 84 3brtr4g Gγ
86 nnex V
87 86 mptex nm=1n1mlognV
88 1 87 eqeltri FV
89 88 a1i FV
90 1 2 3 emcllem4 H0
91 90 a1i H0
92 37 recnd kGk
93 39 37 resubcld kFkGk
94 45 93 eqeltrd kHk
95 94 recnd kHk
96 45 oveq2d kGk+Hk=Gk+Fk-Gk
97 39 recnd kFk
98 92 97 pncan3d kGk+Fk-Gk=Fk
99 96 98 eqtr2d kFk=Gk+Hk
100 5 6 85 89 91 92 95 99 climadd Fγ+0
101 85 mptru Gγ
102 climcl Gγγ
103 101 102 ax-mp γ
104 103 addridi γ+0=γ
105 100 104 breqtrdi Fγ
106 105 mptru Fγ
107 106 101 pm3.2i FγGγ