Metamath Proof Explorer


Theorem emcllem1

Description: Lemma for emcl . The series F and G are sequences of real numbers that approach gamma from above and below, respectively. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
Assertion emcllem1 F:G:

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 fzfid n1nFin
4 elfznn m1nm
5 4 adantl nm1nm
6 5 nnrecred nm1n1m
7 3 6 fsumrecl nm=1n1m
8 nnrp nn+
9 8 relogcld nlogn
10 7 9 resubcld nm=1n1mlogn
11 1 10 fmpti F:
12 peano2nn nn+1
13 12 nnrpd nn+1+
14 13 relogcld nlogn+1
15 7 14 resubcld nm=1n1mlogn+1
16 2 15 fmpti G:
17 11 16 pm3.2i F:G: