| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
| 2 |
|
emcl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
| 3 |
|
fzfid |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) |
| 4 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 6 |
5
|
nnrecred |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 7 |
3 6
|
fsumrecl |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 8 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 9 |
8
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 10 |
7 9
|
resubcld |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 11 |
1 10
|
fmpti |
⊢ 𝐹 : ℕ ⟶ ℝ |
| 12 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 13 |
12
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 14 |
13
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 15 |
7 14
|
resubcld |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 16 |
2 15
|
fmpti |
⊢ 𝐺 : ℕ ⟶ ℝ |
| 17 |
11 16
|
pm3.2i |
⊢ ( 𝐹 : ℕ ⟶ ℝ ∧ 𝐺 : ℕ ⟶ ℝ ) |