Metamath Proof Explorer


Theorem emcllem4

Description: Lemma for emcl . The difference between series F and G tends to zero. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
emcl.3 H=nlog1+1n
Assertion emcllem4 H0

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 emcl.3 H=nlog1+1n
4 nnuz =1
5 1zzd 1
6 ax-1cn 1
7 divcnv 1n1n0
8 6 7 mp1i n1n0
9 nnex V
10 9 mptex nlog1+1nV
11 3 10 eqeltri HV
12 11 a1i HV
13 oveq2 n=m1n=1m
14 eqid n1n=n1n
15 ovex 1mV
16 13 14 15 fvmpt mn1nm=1m
17 16 adantl mn1nm=1m
18 nnrecre m1m
19 18 adantl m1m
20 17 19 eqeltrd mn1nm
21 13 oveq2d n=m1+1n=1+1m
22 21 fveq2d n=mlog1+1n=log1+1m
23 fvex log1+1mV
24 22 3 23 fvmpt mHm=log1+1m
25 24 adantl mHm=log1+1m
26 1rp 1+
27 nnrp mm+
28 27 adantl mm+
29 28 rpreccld m1m+
30 rpaddcl 1+1m+1+1m+
31 26 29 30 sylancr m1+1m+
32 31 rpred m1+1m
33 1re 1
34 ltaddrp 11m+1<1+1m
35 33 29 34 sylancr m1<1+1m
36 32 35 rplogcld mlog1+1m+
37 25 36 eqeltrd mHm+
38 37 rpred mHm
39 31 relogcld mlog1+1m
40 efgt1p 1m+1+1m<e1m
41 29 40 syl m1+1m<e1m
42 19 rpefcld me1m+
43 logltb 1+1m+e1m+1+1m<e1mlog1+1m<loge1m
44 31 42 43 syl2anc m1+1m<e1mlog1+1m<loge1m
45 41 44 mpbid mlog1+1m<loge1m
46 19 relogefd mloge1m=1m
47 45 46 breqtrd mlog1+1m<1m
48 39 19 47 ltled mlog1+1m1m
49 48 25 17 3brtr4d mHmn1nm
50 37 rpge0d m0Hm
51 4 5 8 12 20 38 49 50 climsqz2 H0
52 51 mptru H0