Metamath Proof Explorer


Theorem efgt1p

Description: The exponential of a positive real number is greater than 1 plus that number. (Contributed by Mario Carneiro, 14-Mar-2014) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion efgt1p A + 1 + A < e A

Proof

Step Hyp Ref Expression
1 rpcn A + A
2 nn0uz 0 = 0
3 0nn0 0 0
4 3 a1i A 0 0
5 1e0p1 1 = 0 + 1
6 0z 0
7 eqid n 0 A n n ! = n 0 A n n !
8 7 eftval 0 0 n 0 A n n ! 0 = A 0 0 !
9 3 8 ax-mp n 0 A n n ! 0 = A 0 0 !
10 eft0val A A 0 0 ! = 1
11 9 10 syl5eq A n 0 A n n ! 0 = 1
12 6 11 seq1i A seq 0 + n 0 A n n ! 0 = 1
13 1nn0 1 0
14 7 eftval 1 0 n 0 A n n ! 1 = A 1 1 !
15 13 14 ax-mp n 0 A n n ! 1 = A 1 1 !
16 fac1 1 ! = 1
17 16 oveq2i A 1 1 ! = A 1 1
18 exp1 A A 1 = A
19 18 oveq1d A A 1 1 = A 1
20 div1 A A 1 = A
21 19 20 eqtrd A A 1 1 = A
22 17 21 syl5eq A A 1 1 ! = A
23 15 22 syl5eq A n 0 A n n ! 1 = A
24 2 4 5 12 23 seqp1d A seq 0 + n 0 A n n ! 1 = 1 + A
25 1 24 syl A + seq 0 + n 0 A n n ! 1 = 1 + A
26 id A + A +
27 13 a1i A + 1 0
28 7 26 27 effsumlt A + seq 0 + n 0 A n n ! 1 < e A
29 25 28 eqbrtrrd A + 1 + A < e A