| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
|
| 2 |
|
emcl.2 |
|
| 3 |
|
emcl.3 |
|
| 4 |
|
emcl.4 |
|
| 5 |
|
elfznn |
|
| 6 |
5
|
adantl |
|
| 7 |
6
|
nncnd |
|
| 8 |
|
1cnd |
|
| 9 |
6
|
nnne0d |
|
| 10 |
7 8 7 9
|
divdird |
|
| 11 |
7 9
|
dividd |
|
| 12 |
11
|
oveq1d |
|
| 13 |
10 12
|
eqtrd |
|
| 14 |
13
|
fveq2d |
|
| 15 |
|
peano2nn |
|
| 16 |
6 15
|
syl |
|
| 17 |
16
|
nnrpd |
|
| 18 |
6
|
nnrpd |
|
| 19 |
17 18
|
relogdivd |
|
| 20 |
14 19
|
eqtr3d |
|
| 21 |
20
|
sumeq2dv |
|
| 22 |
|
fveq2 |
|
| 23 |
|
fveq2 |
|
| 24 |
|
fveq2 |
|
| 25 |
|
fveq2 |
|
| 26 |
|
nnz |
|
| 27 |
|
peano2nn |
|
| 28 |
|
nnuz |
|
| 29 |
27 28
|
eleqtrdi |
|
| 30 |
|
elfznn |
|
| 31 |
30
|
adantl |
|
| 32 |
31
|
nnrpd |
|
| 33 |
32
|
relogcld |
|
| 34 |
33
|
recnd |
|
| 35 |
22 23 24 25 26 29 34
|
telfsum2 |
|
| 36 |
|
log1 |
|
| 37 |
36
|
oveq2i |
|
| 38 |
27
|
nnrpd |
|
| 39 |
38
|
relogcld |
|
| 40 |
39
|
recnd |
|
| 41 |
40
|
subid1d |
|
| 42 |
37 41
|
eqtrid |
|
| 43 |
21 35 42
|
3eqtrd |
|
| 44 |
43
|
oveq2d |
|
| 45 |
|
fzfid |
|
| 46 |
6
|
nnrecred |
|
| 47 |
46
|
recnd |
|
| 48 |
|
1rp |
|
| 49 |
18
|
rpreccld |
|
| 50 |
|
rpaddcl |
|
| 51 |
48 49 50
|
sylancr |
|
| 52 |
51
|
relogcld |
|
| 53 |
52
|
recnd |
|
| 54 |
45 47 53
|
fsumsub |
|
| 55 |
|
oveq2 |
|
| 56 |
55
|
oveq2d |
|
| 57 |
56
|
fveq2d |
|
| 58 |
55 57
|
oveq12d |
|
| 59 |
|
ovex |
|
| 60 |
58 4 59
|
fvmpt |
|
| 61 |
6 60
|
syl |
|
| 62 |
|
id |
|
| 63 |
62 28
|
eleqtrdi |
|
| 64 |
46 52
|
resubcld |
|
| 65 |
64
|
recnd |
|
| 66 |
61 63 65
|
fsumser |
|
| 67 |
54 66
|
eqtr3d |
|
| 68 |
44 67
|
eqtr3d |
|
| 69 |
68
|
mpteq2ia |
|
| 70 |
|
1z |
|
| 71 |
|
seqfn |
|
| 72 |
70 71
|
ax-mp |
|
| 73 |
28
|
fneq2i |
|
| 74 |
72 73
|
mpbir |
|
| 75 |
|
dffn5 |
|
| 76 |
74 75
|
mpbi |
|
| 77 |
69 2 76
|
3eqtr4i |
|