Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Euler-Mascheroni constant
df-em
Metamath Proof Explorer
Definition df-em
Description: Define the Euler-Mascheroni constant, gamma = 0.57721.... This is the
limit of the series sum_ k e. ( 1 ... m ) ( 1 / k ) - ( log m ) ,
with a proof that the limit exists in emcl . (Contributed by Mario
Carneiro , 11-Jul-2014)
Ref
Expression
Assertion
df-em
⊢ γ = ∑ k ∈ ℕ 1 k − log ⁡ 1 + 1 k
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cem
class γ
1
vk
setvar k
2
cn
class ℕ
3
c1
class 1
4
cdiv
class ÷
5
1
cv
setvar k
6
3 5 4
co
class 1 k
7
cmin
class −
8
clog
class log
9
caddc
class +
10
3 6 9
co
class 1 + 1 k
11
10 8
cfv
class log ⁡ 1 + 1 k
12
6 11 7
co
class 1 k − log ⁡ 1 + 1 k
13
2 12 1
csu
class ∑ k ∈ ℕ 1 k − log ⁡ 1 + 1 k
14
0 13
wceq
wff γ = ∑ k ∈ ℕ 1 k − log ⁡ 1 + 1 k