Metamath Proof Explorer


Theorem logdifbnd

Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion logdifbnd A+logA+1logA1A

Proof

Step Hyp Ref Expression
1 rpcn A+A
2 1cnd A+1
3 rpne0 A+A0
4 1 2 1 3 divdird A+A+1A=AA+1A
5 1 3 dividd A+AA=1
6 5 oveq1d A+AA+1A=1+1A
7 4 6 eqtr2d A+1+1A=A+1A
8 7 fveq2d A+log1+1A=logA+1A
9 1rp 1+
10 rpaddcl A+1+A+1+
11 9 10 mpan2 A+A+1+
12 relogdiv A+1+A+logA+1A=logA+1logA
13 11 12 mpancom A+logA+1A=logA+1logA
14 8 13 eqtrd A+log1+1A=logA+1logA
15 rpreccl A+1A+
16 rpaddcl 1+1A+1+1A+
17 9 15 16 sylancr A+1+1A+
18 17 reeflogd A+elog1+1A=1+1A
19 17 rpred A+1+1A
20 15 rpred A+1A
21 20 reefcld A+e1A
22 efgt1p 1A+1+1A<e1A
23 15 22 syl A+1+1A<e1A
24 19 21 23 ltled A+1+1Ae1A
25 18 24 eqbrtrd A+elog1+1Ae1A
26 relogcl A+1+logA+1
27 11 26 syl A+logA+1
28 relogcl A+logA
29 27 28 resubcld A+logA+1logA
30 14 29 eqeltrd A+log1+1A
31 efle log1+1A1Alog1+1A1Aelog1+1Ae1A
32 30 20 31 syl2anc A+log1+1A1Aelog1+1Ae1A
33 25 32 mpbird A+log1+1A1A
34 14 33 eqbrtrrd A+logA+1logA1A