Metamath Proof Explorer


Theorem logdifbnd

Description: Bound on the difference of logs. (Contributed by Mario Carneiro, 23-May-2016)

Ref Expression
Assertion logdifbnd ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpcn ( 𝐴 ∈ ℝ+𝐴 ∈ ℂ )
2 1cnd ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ )
3 rpne0 ( 𝐴 ∈ ℝ+𝐴 ≠ 0 )
4 1 2 1 3 divdird ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / 𝐴 ) = ( ( 𝐴 / 𝐴 ) + ( 1 / 𝐴 ) ) )
5 1 3 dividd ( 𝐴 ∈ ℝ+ → ( 𝐴 / 𝐴 ) = 1 )
6 5 oveq1d ( 𝐴 ∈ ℝ+ → ( ( 𝐴 / 𝐴 ) + ( 1 / 𝐴 ) ) = ( 1 + ( 1 / 𝐴 ) ) )
7 4 6 eqtr2d ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) )
8 7 fveq2d ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) = ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) )
9 1rp 1 ∈ ℝ+
10 rpaddcl ( ( 𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝐴 + 1 ) ∈ ℝ+ )
11 9 10 mpan2 ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ+ )
12 relogdiv ( ( ( 𝐴 + 1 ) ∈ ℝ+𝐴 ∈ ℝ+ ) → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) )
13 11 12 mpancom ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) )
14 8 13 eqtrd ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) )
15 rpreccl ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ+ )
16 rpaddcl ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝐴 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ+ )
17 9 15 16 sylancr ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ+ )
18 17 reeflogd ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) = ( 1 + ( 1 / 𝐴 ) ) )
19 17 rpred ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ∈ ℝ )
20 15 rpred ( 𝐴 ∈ ℝ+ → ( 1 / 𝐴 ) ∈ ℝ )
21 20 reefcld ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / 𝐴 ) ) ∈ ℝ )
22 efgt1p ( ( 1 / 𝐴 ) ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) )
23 15 22 syl ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) < ( exp ‘ ( 1 / 𝐴 ) ) )
24 19 21 23 ltled ( 𝐴 ∈ ℝ+ → ( 1 + ( 1 / 𝐴 ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) )
25 18 24 eqbrtrd ( 𝐴 ∈ ℝ+ → ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) )
26 relogcl ( ( 𝐴 + 1 ) ∈ ℝ+ → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ )
27 11 26 syl ( 𝐴 ∈ ℝ+ → ( log ‘ ( 𝐴 + 1 ) ) ∈ ℝ )
28 relogcl ( 𝐴 ∈ ℝ+ → ( log ‘ 𝐴 ) ∈ ℝ )
29 27 28 resubcld ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ∈ ℝ )
30 14 29 eqeltrd ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ∈ ℝ )
31 efle ( ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ∈ ℝ ∧ ( 1 / 𝐴 ) ∈ ℝ ) → ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) )
32 30 20 31 syl2anc ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) ↔ ( exp ‘ ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ) ≤ ( exp ‘ ( 1 / 𝐴 ) ) ) )
33 25 32 mpbird ( 𝐴 ∈ ℝ+ → ( log ‘ ( 1 + ( 1 / 𝐴 ) ) ) ≤ ( 1 / 𝐴 ) )
34 14 33 eqbrtrrd ( 𝐴 ∈ ℝ+ → ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ≤ ( 1 / 𝐴 ) )