| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpre |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ ) |
| 2 |
|
rpge0 |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 𝐴 ) |
| 3 |
1 2
|
ge0p1rpd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ+ ) |
| 4 |
3
|
rprecred |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 5 |
|
1red |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℝ ) |
| 6 |
|
0le1 |
⊢ 0 ≤ 1 |
| 7 |
6
|
a1i |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ 1 ) |
| 8 |
5 3 7
|
divge0d |
⊢ ( 𝐴 ∈ ℝ+ → 0 ≤ ( 1 / ( 𝐴 + 1 ) ) ) |
| 9 |
|
id |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ+ ) |
| 10 |
5 9
|
ltaddrp2d |
⊢ ( 𝐴 ∈ ℝ+ → 1 < ( 𝐴 + 1 ) ) |
| 11 |
1 5
|
readdcld |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℝ ) |
| 12 |
11
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ∈ ℂ ) |
| 13 |
12
|
mulridd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) · 1 ) = ( 𝐴 + 1 ) ) |
| 14 |
10 13
|
breqtrrd |
⊢ ( 𝐴 ∈ ℝ+ → 1 < ( ( 𝐴 + 1 ) · 1 ) ) |
| 15 |
5 5 3
|
ltdivmuld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 1 / ( 𝐴 + 1 ) ) < 1 ↔ 1 < ( ( 𝐴 + 1 ) · 1 ) ) ) |
| 16 |
14 15
|
mpbird |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) < 1 ) |
| 17 |
4 8 16
|
eflegeo |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) ) |
| 18 |
5
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → 1 ∈ ℂ ) |
| 19 |
3
|
rpne0d |
⊢ ( 𝐴 ∈ ℝ+ → ( 𝐴 + 1 ) ≠ 0 ) |
| 20 |
12 18 12 19
|
divsubdird |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) − 1 ) / ( 𝐴 + 1 ) ) = ( ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) − ( 1 / ( 𝐴 + 1 ) ) ) ) |
| 21 |
1
|
recnd |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ∈ ℂ ) |
| 22 |
21 18
|
pncand |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) − 1 ) = 𝐴 ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) − 1 ) / ( 𝐴 + 1 ) ) = ( 𝐴 / ( 𝐴 + 1 ) ) ) |
| 24 |
12 19
|
dividd |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) = 1 ) |
| 25 |
24
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ+ → ( ( ( 𝐴 + 1 ) / ( 𝐴 + 1 ) ) − ( 1 / ( 𝐴 + 1 ) ) ) = ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) |
| 26 |
20 23 25
|
3eqtr3rd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) = ( 𝐴 / ( 𝐴 + 1 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) = ( 1 / ( 𝐴 / ( 𝐴 + 1 ) ) ) ) |
| 28 |
|
rpne0 |
⊢ ( 𝐴 ∈ ℝ+ → 𝐴 ≠ 0 ) |
| 29 |
21 12 28 19
|
recdivd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 / ( 𝐴 + 1 ) ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 1 − ( 1 / ( 𝐴 + 1 ) ) ) ) = ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 31 |
17 30
|
breqtrd |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( ( 𝐴 + 1 ) / 𝐴 ) ) |
| 32 |
4
|
rpefcld |
⊢ ( 𝐴 ∈ ℝ+ → ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ∈ ℝ+ ) |
| 33 |
3 9
|
rpdivcld |
⊢ ( 𝐴 ∈ ℝ+ → ( ( 𝐴 + 1 ) / 𝐴 ) ∈ ℝ+ ) |
| 34 |
32 33
|
logled |
⊢ ( 𝐴 ∈ ℝ+ → ( ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ≤ ( ( 𝐴 + 1 ) / 𝐴 ) ↔ ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) ) |
| 35 |
31 34
|
mpbid |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) ≤ ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) ) |
| 36 |
4
|
relogefd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( exp ‘ ( 1 / ( 𝐴 + 1 ) ) ) ) = ( 1 / ( 𝐴 + 1 ) ) ) |
| 37 |
3 9
|
relogdivd |
⊢ ( 𝐴 ∈ ℝ+ → ( log ‘ ( ( 𝐴 + 1 ) / 𝐴 ) ) = ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |
| 38 |
35 36 37
|
3brtr3d |
⊢ ( 𝐴 ∈ ℝ+ → ( 1 / ( 𝐴 + 1 ) ) ≤ ( ( log ‘ ( 𝐴 + 1 ) ) − ( log ‘ 𝐴 ) ) ) |