| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
| 2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
| 3 |
|
emcl.3 |
|- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
| 4 |
|
emcl.4 |
|- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
| 5 |
|
elfznn |
|- ( m e. ( 1 ... n ) -> m e. NN ) |
| 6 |
5
|
adantl |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. NN ) |
| 7 |
6
|
nncnd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. CC ) |
| 8 |
|
1cnd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> 1 e. CC ) |
| 9 |
6
|
nnne0d |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m =/= 0 ) |
| 10 |
7 8 7 9
|
divdird |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( m + 1 ) / m ) = ( ( m / m ) + ( 1 / m ) ) ) |
| 11 |
7 9
|
dividd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( m / m ) = 1 ) |
| 12 |
11
|
oveq1d |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( m / m ) + ( 1 / m ) ) = ( 1 + ( 1 / m ) ) ) |
| 13 |
10 12
|
eqtrd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( m + 1 ) / m ) = ( 1 + ( 1 / m ) ) ) |
| 14 |
13
|
fveq2d |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( ( m + 1 ) / m ) ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 15 |
|
peano2nn |
|- ( m e. NN -> ( m + 1 ) e. NN ) |
| 16 |
6 15
|
syl |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( m + 1 ) e. NN ) |
| 17 |
16
|
nnrpd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( m + 1 ) e. RR+ ) |
| 18 |
6
|
nnrpd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> m e. RR+ ) |
| 19 |
17 18
|
relogdivd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( ( m + 1 ) / m ) ) = ( ( log ` ( m + 1 ) ) - ( log ` m ) ) ) |
| 20 |
14 19
|
eqtr3d |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( 1 + ( 1 / m ) ) ) = ( ( log ` ( m + 1 ) ) - ( log ` m ) ) ) |
| 21 |
20
|
sumeq2dv |
|- ( n e. NN -> sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) = sum_ m e. ( 1 ... n ) ( ( log ` ( m + 1 ) ) - ( log ` m ) ) ) |
| 22 |
|
fveq2 |
|- ( x = m -> ( log ` x ) = ( log ` m ) ) |
| 23 |
|
fveq2 |
|- ( x = ( m + 1 ) -> ( log ` x ) = ( log ` ( m + 1 ) ) ) |
| 24 |
|
fveq2 |
|- ( x = 1 -> ( log ` x ) = ( log ` 1 ) ) |
| 25 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( log ` x ) = ( log ` ( n + 1 ) ) ) |
| 26 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
| 27 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
| 28 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 29 |
27 28
|
eleqtrdi |
|- ( n e. NN -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) |
| 30 |
|
elfznn |
|- ( x e. ( 1 ... ( n + 1 ) ) -> x e. NN ) |
| 31 |
30
|
adantl |
|- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. NN ) |
| 32 |
31
|
nnrpd |
|- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> x e. RR+ ) |
| 33 |
32
|
relogcld |
|- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` x ) e. RR ) |
| 34 |
33
|
recnd |
|- ( ( n e. NN /\ x e. ( 1 ... ( n + 1 ) ) ) -> ( log ` x ) e. CC ) |
| 35 |
22 23 24 25 26 29 34
|
telfsum2 |
|- ( n e. NN -> sum_ m e. ( 1 ... n ) ( ( log ` ( m + 1 ) ) - ( log ` m ) ) = ( ( log ` ( n + 1 ) ) - ( log ` 1 ) ) ) |
| 36 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 37 |
36
|
oveq2i |
|- ( ( log ` ( n + 1 ) ) - ( log ` 1 ) ) = ( ( log ` ( n + 1 ) ) - 0 ) |
| 38 |
27
|
nnrpd |
|- ( n e. NN -> ( n + 1 ) e. RR+ ) |
| 39 |
38
|
relogcld |
|- ( n e. NN -> ( log ` ( n + 1 ) ) e. RR ) |
| 40 |
39
|
recnd |
|- ( n e. NN -> ( log ` ( n + 1 ) ) e. CC ) |
| 41 |
40
|
subid1d |
|- ( n e. NN -> ( ( log ` ( n + 1 ) ) - 0 ) = ( log ` ( n + 1 ) ) ) |
| 42 |
37 41
|
eqtrid |
|- ( n e. NN -> ( ( log ` ( n + 1 ) ) - ( log ` 1 ) ) = ( log ` ( n + 1 ) ) ) |
| 43 |
21 35 42
|
3eqtrd |
|- ( n e. NN -> sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) = ( log ` ( n + 1 ) ) ) |
| 44 |
43
|
oveq2d |
|- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) ) = ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
| 45 |
|
fzfid |
|- ( n e. NN -> ( 1 ... n ) e. Fin ) |
| 46 |
6
|
nnrecred |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. RR ) |
| 47 |
46
|
recnd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. CC ) |
| 48 |
|
1rp |
|- 1 e. RR+ |
| 49 |
18
|
rpreccld |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 / m ) e. RR+ ) |
| 50 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( 1 / m ) e. RR+ ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
| 51 |
48 49 50
|
sylancr |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( 1 + ( 1 / m ) ) e. RR+ ) |
| 52 |
51
|
relogcld |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. RR ) |
| 53 |
52
|
recnd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( log ` ( 1 + ( 1 / m ) ) ) e. CC ) |
| 54 |
45 47 53
|
fsumsub |
|- ( n e. NN -> sum_ m e. ( 1 ... n ) ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) = ( sum_ m e. ( 1 ... n ) ( 1 / m ) - sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 55 |
|
oveq2 |
|- ( n = m -> ( 1 / n ) = ( 1 / m ) ) |
| 56 |
55
|
oveq2d |
|- ( n = m -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / m ) ) ) |
| 57 |
56
|
fveq2d |
|- ( n = m -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / m ) ) ) ) |
| 58 |
55 57
|
oveq12d |
|- ( n = m -> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) = ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 59 |
|
ovex |
|- ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) e. _V |
| 60 |
58 4 59
|
fvmpt |
|- ( m e. NN -> ( T ` m ) = ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 61 |
6 60
|
syl |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( T ` m ) = ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) ) |
| 62 |
|
id |
|- ( n e. NN -> n e. NN ) |
| 63 |
62 28
|
eleqtrdi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 64 |
46 52
|
resubcld |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) e. RR ) |
| 65 |
64
|
recnd |
|- ( ( n e. NN /\ m e. ( 1 ... n ) ) -> ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) e. CC ) |
| 66 |
61 63 65
|
fsumser |
|- ( n e. NN -> sum_ m e. ( 1 ... n ) ( ( 1 / m ) - ( log ` ( 1 + ( 1 / m ) ) ) ) = ( seq 1 ( + , T ) ` n ) ) |
| 67 |
54 66
|
eqtr3d |
|- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - sum_ m e. ( 1 ... n ) ( log ` ( 1 + ( 1 / m ) ) ) ) = ( seq 1 ( + , T ) ` n ) ) |
| 68 |
44 67
|
eqtr3d |
|- ( n e. NN -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( seq 1 ( + , T ) ` n ) ) |
| 69 |
68
|
mpteq2ia |
|- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) = ( n e. NN |-> ( seq 1 ( + , T ) ` n ) ) |
| 70 |
|
1z |
|- 1 e. ZZ |
| 71 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( + , T ) Fn ( ZZ>= ` 1 ) ) |
| 72 |
70 71
|
ax-mp |
|- seq 1 ( + , T ) Fn ( ZZ>= ` 1 ) |
| 73 |
28
|
fneq2i |
|- ( seq 1 ( + , T ) Fn NN <-> seq 1 ( + , T ) Fn ( ZZ>= ` 1 ) ) |
| 74 |
72 73
|
mpbir |
|- seq 1 ( + , T ) Fn NN |
| 75 |
|
dffn5 |
|- ( seq 1 ( + , T ) Fn NN <-> seq 1 ( + , T ) = ( n e. NN |-> ( seq 1 ( + , T ) ` n ) ) ) |
| 76 |
74 75
|
mpbi |
|- seq 1 ( + , T ) = ( n e. NN |-> ( seq 1 ( + , T ) ` n ) ) |
| 77 |
69 2 76
|
3eqtr4i |
|- G = seq 1 ( + , T ) |