| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
| 2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
| 3 |
|
emcl.3 |
|- H = ( n e. NN |-> ( log ` ( 1 + ( 1 / n ) ) ) ) |
| 4 |
|
emcl.4 |
|- T = ( n e. NN |-> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) ) |
| 5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 6 |
|
1zzd |
|- ( T. -> 1 e. ZZ ) |
| 7 |
|
oveq2 |
|- ( n = k -> ( 1 / n ) = ( 1 / k ) ) |
| 8 |
7
|
oveq2d |
|- ( n = k -> ( 1 + ( 1 / n ) ) = ( 1 + ( 1 / k ) ) ) |
| 9 |
8
|
fveq2d |
|- ( n = k -> ( log ` ( 1 + ( 1 / n ) ) ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 10 |
7 9
|
oveq12d |
|- ( n = k -> ( ( 1 / n ) - ( log ` ( 1 + ( 1 / n ) ) ) ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 11 |
|
ovex |
|- ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. _V |
| 12 |
10 4 11
|
fvmpt |
|- ( k e. NN -> ( T ` k ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 13 |
12
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( T ` k ) = ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 14 |
|
nnrecre |
|- ( k e. NN -> ( 1 / k ) e. RR ) |
| 15 |
14
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR ) |
| 16 |
|
1rp |
|- 1 e. RR+ |
| 17 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 18 |
17
|
rpreccld |
|- ( k e. NN -> ( 1 / k ) e. RR+ ) |
| 19 |
18
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( 1 / k ) e. RR+ ) |
| 20 |
|
rpaddcl |
|- ( ( 1 e. RR+ /\ ( 1 / k ) e. RR+ ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
| 21 |
16 19 20
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR+ ) |
| 22 |
21
|
relogcld |
|- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) e. RR ) |
| 23 |
15 22
|
resubcld |
|- ( ( T. /\ k e. NN ) -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. RR ) |
| 24 |
23
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) e. CC ) |
| 25 |
1 2 3 4
|
emcllem5 |
|- G = seq 1 ( + , T ) |
| 26 |
1 2
|
emcllem1 |
|- ( F : NN --> RR /\ G : NN --> RR ) |
| 27 |
26
|
simpri |
|- G : NN --> RR |
| 28 |
27
|
a1i |
|- ( T. -> G : NN --> RR ) |
| 29 |
1 2
|
emcllem2 |
|- ( k e. NN -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( G ` k ) <_ ( G ` ( k + 1 ) ) ) ) |
| 30 |
29
|
simprd |
|- ( k e. NN -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 31 |
30
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( G ` ( k + 1 ) ) ) |
| 32 |
|
1nn |
|- 1 e. NN |
| 33 |
26
|
simpli |
|- F : NN --> RR |
| 34 |
33
|
ffvelcdmi |
|- ( 1 e. NN -> ( F ` 1 ) e. RR ) |
| 35 |
32 34
|
ax-mp |
|- ( F ` 1 ) e. RR |
| 36 |
27
|
ffvelcdmi |
|- ( k e. NN -> ( G ` k ) e. RR ) |
| 37 |
36
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 38 |
33
|
ffvelcdmi |
|- ( k e. NN -> ( F ` k ) e. RR ) |
| 39 |
38
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. RR ) |
| 40 |
35
|
a1i |
|- ( ( T. /\ k e. NN ) -> ( F ` 1 ) e. RR ) |
| 41 |
|
fvex |
|- ( log ` ( 1 + ( 1 / k ) ) ) e. _V |
| 42 |
9 3 41
|
fvmpt |
|- ( k e. NN -> ( H ` k ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 43 |
42
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 44 |
1 2 3
|
emcllem3 |
|- ( k e. NN -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 45 |
44
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 46 |
43 45
|
eqtr3d |
|- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) = ( ( F ` k ) - ( G ` k ) ) ) |
| 47 |
|
1re |
|- 1 e. RR |
| 48 |
|
readdcl |
|- ( ( 1 e. RR /\ ( 1 / k ) e. RR ) -> ( 1 + ( 1 / k ) ) e. RR ) |
| 49 |
47 15 48
|
sylancr |
|- ( ( T. /\ k e. NN ) -> ( 1 + ( 1 / k ) ) e. RR ) |
| 50 |
|
ltaddrp |
|- ( ( 1 e. RR /\ ( 1 / k ) e. RR+ ) -> 1 < ( 1 + ( 1 / k ) ) ) |
| 51 |
47 19 50
|
sylancr |
|- ( ( T. /\ k e. NN ) -> 1 < ( 1 + ( 1 / k ) ) ) |
| 52 |
49 51
|
rplogcld |
|- ( ( T. /\ k e. NN ) -> ( log ` ( 1 + ( 1 / k ) ) ) e. RR+ ) |
| 53 |
46 52
|
eqeltrrd |
|- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( G ` k ) ) e. RR+ ) |
| 54 |
53
|
rpge0d |
|- ( ( T. /\ k e. NN ) -> 0 <_ ( ( F ` k ) - ( G ` k ) ) ) |
| 55 |
39 37
|
subge0d |
|- ( ( T. /\ k e. NN ) -> ( 0 <_ ( ( F ` k ) - ( G ` k ) ) <-> ( G ` k ) <_ ( F ` k ) ) ) |
| 56 |
54 55
|
mpbid |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` k ) ) |
| 57 |
|
fveq2 |
|- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
| 58 |
57
|
breq1d |
|- ( x = 1 -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` 1 ) <_ ( F ` 1 ) ) ) |
| 59 |
|
fveq2 |
|- ( x = k -> ( F ` x ) = ( F ` k ) ) |
| 60 |
59
|
breq1d |
|- ( x = k -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` k ) <_ ( F ` 1 ) ) ) |
| 61 |
|
fveq2 |
|- ( x = ( k + 1 ) -> ( F ` x ) = ( F ` ( k + 1 ) ) ) |
| 62 |
61
|
breq1d |
|- ( x = ( k + 1 ) -> ( ( F ` x ) <_ ( F ` 1 ) <-> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 63 |
35
|
leidi |
|- ( F ` 1 ) <_ ( F ` 1 ) |
| 64 |
29
|
simpld |
|- ( k e. NN -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 65 |
|
peano2nn |
|- ( k e. NN -> ( k + 1 ) e. NN ) |
| 66 |
33
|
ffvelcdmi |
|- ( ( k + 1 ) e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
| 67 |
65 66
|
syl |
|- ( k e. NN -> ( F ` ( k + 1 ) ) e. RR ) |
| 68 |
35
|
a1i |
|- ( k e. NN -> ( F ` 1 ) e. RR ) |
| 69 |
|
letr |
|- ( ( ( F ` ( k + 1 ) ) e. RR /\ ( F ` k ) e. RR /\ ( F ` 1 ) e. RR ) -> ( ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( F ` k ) <_ ( F ` 1 ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 70 |
67 38 68 69
|
syl3anc |
|- ( k e. NN -> ( ( ( F ` ( k + 1 ) ) <_ ( F ` k ) /\ ( F ` k ) <_ ( F ` 1 ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 71 |
64 70
|
mpand |
|- ( k e. NN -> ( ( F ` k ) <_ ( F ` 1 ) -> ( F ` ( k + 1 ) ) <_ ( F ` 1 ) ) ) |
| 72 |
58 60 62 60 63 71
|
nnind |
|- ( k e. NN -> ( F ` k ) <_ ( F ` 1 ) ) |
| 73 |
72
|
adantl |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) <_ ( F ` 1 ) ) |
| 74 |
37 39 40 56 73
|
letrd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) <_ ( F ` 1 ) ) |
| 75 |
74
|
ralrimiva |
|- ( T. -> A. k e. NN ( G ` k ) <_ ( F ` 1 ) ) |
| 76 |
|
brralrspcev |
|- ( ( ( F ` 1 ) e. RR /\ A. k e. NN ( G ` k ) <_ ( F ` 1 ) ) -> E. x e. RR A. k e. NN ( G ` k ) <_ x ) |
| 77 |
35 75 76
|
sylancr |
|- ( T. -> E. x e. RR A. k e. NN ( G ` k ) <_ x ) |
| 78 |
5 6 28 31 77
|
climsup |
|- ( T. -> G ~~> sup ( ran G , RR , < ) ) |
| 79 |
25 78
|
eqbrtrrid |
|- ( T. -> seq 1 ( + , T ) ~~> sup ( ran G , RR , < ) ) |
| 80 |
|
climrel |
|- Rel ~~> |
| 81 |
80
|
releldmi |
|- ( seq 1 ( + , T ) ~~> sup ( ran G , RR , < ) -> seq 1 ( + , T ) e. dom ~~> ) |
| 82 |
79 81
|
syl |
|- ( T. -> seq 1 ( + , T ) e. dom ~~> ) |
| 83 |
5 6 13 24 82
|
isumclim2 |
|- ( T. -> seq 1 ( + , T ) ~~> sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) ) |
| 84 |
|
df-em |
|- gamma = sum_ k e. NN ( ( 1 / k ) - ( log ` ( 1 + ( 1 / k ) ) ) ) |
| 85 |
83 25 84
|
3brtr4g |
|- ( T. -> G ~~> gamma ) |
| 86 |
|
nnex |
|- NN e. _V |
| 87 |
86
|
mptex |
|- ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) e. _V |
| 88 |
1 87
|
eqeltri |
|- F e. _V |
| 89 |
88
|
a1i |
|- ( T. -> F e. _V ) |
| 90 |
1 2 3
|
emcllem4 |
|- H ~~> 0 |
| 91 |
90
|
a1i |
|- ( T. -> H ~~> 0 ) |
| 92 |
37
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( G ` k ) e. CC ) |
| 93 |
39 37
|
resubcld |
|- ( ( T. /\ k e. NN ) -> ( ( F ` k ) - ( G ` k ) ) e. RR ) |
| 94 |
45 93
|
eqeltrd |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) e. RR ) |
| 95 |
94
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( H ` k ) e. CC ) |
| 96 |
45
|
oveq2d |
|- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + ( H ` k ) ) = ( ( G ` k ) + ( ( F ` k ) - ( G ` k ) ) ) ) |
| 97 |
39
|
recnd |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 98 |
92 97
|
pncan3d |
|- ( ( T. /\ k e. NN ) -> ( ( G ` k ) + ( ( F ` k ) - ( G ` k ) ) ) = ( F ` k ) ) |
| 99 |
96 98
|
eqtr2d |
|- ( ( T. /\ k e. NN ) -> ( F ` k ) = ( ( G ` k ) + ( H ` k ) ) ) |
| 100 |
5 6 85 89 91 92 95 99
|
climadd |
|- ( T. -> F ~~> ( gamma + 0 ) ) |
| 101 |
85
|
mptru |
|- G ~~> gamma |
| 102 |
|
climcl |
|- ( G ~~> gamma -> gamma e. CC ) |
| 103 |
101 102
|
ax-mp |
|- gamma e. CC |
| 104 |
103
|
addridi |
|- ( gamma + 0 ) = gamma |
| 105 |
100 104
|
breqtrdi |
|- ( T. -> F ~~> gamma ) |
| 106 |
105
|
mptru |
|- F ~~> gamma |
| 107 |
106 101
|
pm3.2i |
|- ( F ~~> gamma /\ G ~~> gamma ) |