| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
|- F = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) ) |
| 2 |
|
emcl.2 |
|- G = ( n e. NN |-> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) ) |
| 3 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
| 4 |
3
|
nnrecred |
|- ( N e. NN -> ( 1 / ( N + 1 ) ) e. RR ) |
| 5 |
3
|
nnrpd |
|- ( N e. NN -> ( N + 1 ) e. RR+ ) |
| 6 |
5
|
relogcld |
|- ( N e. NN -> ( log ` ( N + 1 ) ) e. RR ) |
| 7 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
| 8 |
7
|
relogcld |
|- ( N e. NN -> ( log ` N ) e. RR ) |
| 9 |
6 8
|
resubcld |
|- ( N e. NN -> ( ( log ` ( N + 1 ) ) - ( log ` N ) ) e. RR ) |
| 10 |
|
fzfid |
|- ( N e. NN -> ( 1 ... N ) e. Fin ) |
| 11 |
|
elfznn |
|- ( m e. ( 1 ... N ) -> m e. NN ) |
| 12 |
11
|
adantl |
|- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> m e. NN ) |
| 13 |
12
|
nnrecred |
|- ( ( N e. NN /\ m e. ( 1 ... N ) ) -> ( 1 / m ) e. RR ) |
| 14 |
10 13
|
fsumrecl |
|- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. RR ) |
| 15 |
5
|
rpreccld |
|- ( N e. NN -> ( 1 / ( N + 1 ) ) e. RR+ ) |
| 16 |
15
|
rpge0d |
|- ( N e. NN -> 0 <_ ( 1 / ( N + 1 ) ) ) |
| 17 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 18 |
|
1re |
|- 1 e. RR |
| 19 |
|
ltaddrp |
|- ( ( 1 e. RR /\ N e. RR+ ) -> 1 < ( 1 + N ) ) |
| 20 |
18 7 19
|
sylancr |
|- ( N e. NN -> 1 < ( 1 + N ) ) |
| 21 |
|
ax-1cn |
|- 1 e. CC |
| 22 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 23 |
|
addcom |
|- ( ( 1 e. CC /\ N e. CC ) -> ( 1 + N ) = ( N + 1 ) ) |
| 24 |
21 22 23
|
sylancr |
|- ( N e. NN -> ( 1 + N ) = ( N + 1 ) ) |
| 25 |
20 24
|
breqtrd |
|- ( N e. NN -> 1 < ( N + 1 ) ) |
| 26 |
17 25
|
eqbrtrid |
|- ( N e. NN -> ( 1 / 1 ) < ( N + 1 ) ) |
| 27 |
3
|
nnred |
|- ( N e. NN -> ( N + 1 ) e. RR ) |
| 28 |
3
|
nngt0d |
|- ( N e. NN -> 0 < ( N + 1 ) ) |
| 29 |
|
0lt1 |
|- 0 < 1 |
| 30 |
|
ltrec1 |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( N + 1 ) e. RR /\ 0 < ( N + 1 ) ) ) -> ( ( 1 / 1 ) < ( N + 1 ) <-> ( 1 / ( N + 1 ) ) < 1 ) ) |
| 31 |
18 29 30
|
mpanl12 |
|- ( ( ( N + 1 ) e. RR /\ 0 < ( N + 1 ) ) -> ( ( 1 / 1 ) < ( N + 1 ) <-> ( 1 / ( N + 1 ) ) < 1 ) ) |
| 32 |
27 28 31
|
syl2anc |
|- ( N e. NN -> ( ( 1 / 1 ) < ( N + 1 ) <-> ( 1 / ( N + 1 ) ) < 1 ) ) |
| 33 |
26 32
|
mpbid |
|- ( N e. NN -> ( 1 / ( N + 1 ) ) < 1 ) |
| 34 |
4 16 33
|
eflegeo |
|- ( N e. NN -> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( 1 / ( 1 - ( 1 / ( N + 1 ) ) ) ) ) |
| 35 |
27
|
recnd |
|- ( N e. NN -> ( N + 1 ) e. CC ) |
| 36 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
| 37 |
3
|
nnne0d |
|- ( N e. NN -> ( N + 1 ) =/= 0 ) |
| 38 |
22 35 36 37
|
recdivd |
|- ( N e. NN -> ( 1 / ( N / ( N + 1 ) ) ) = ( ( N + 1 ) / N ) ) |
| 39 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
| 40 |
35 39 35 37
|
divsubdird |
|- ( N e. NN -> ( ( ( N + 1 ) - 1 ) / ( N + 1 ) ) = ( ( ( N + 1 ) / ( N + 1 ) ) - ( 1 / ( N + 1 ) ) ) ) |
| 41 |
|
pncan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N + 1 ) - 1 ) = N ) |
| 42 |
22 21 41
|
sylancl |
|- ( N e. NN -> ( ( N + 1 ) - 1 ) = N ) |
| 43 |
42
|
oveq1d |
|- ( N e. NN -> ( ( ( N + 1 ) - 1 ) / ( N + 1 ) ) = ( N / ( N + 1 ) ) ) |
| 44 |
35 37
|
dividd |
|- ( N e. NN -> ( ( N + 1 ) / ( N + 1 ) ) = 1 ) |
| 45 |
44
|
oveq1d |
|- ( N e. NN -> ( ( ( N + 1 ) / ( N + 1 ) ) - ( 1 / ( N + 1 ) ) ) = ( 1 - ( 1 / ( N + 1 ) ) ) ) |
| 46 |
40 43 45
|
3eqtr3rd |
|- ( N e. NN -> ( 1 - ( 1 / ( N + 1 ) ) ) = ( N / ( N + 1 ) ) ) |
| 47 |
46
|
oveq2d |
|- ( N e. NN -> ( 1 / ( 1 - ( 1 / ( N + 1 ) ) ) ) = ( 1 / ( N / ( N + 1 ) ) ) ) |
| 48 |
5 7
|
rpdivcld |
|- ( N e. NN -> ( ( N + 1 ) / N ) e. RR+ ) |
| 49 |
48
|
reeflogd |
|- ( N e. NN -> ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) = ( ( N + 1 ) / N ) ) |
| 50 |
38 47 49
|
3eqtr4d |
|- ( N e. NN -> ( 1 / ( 1 - ( 1 / ( N + 1 ) ) ) ) = ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 51 |
34 50
|
breqtrd |
|- ( N e. NN -> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) |
| 52 |
5 7
|
relogdivd |
|- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) = ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 53 |
52 9
|
eqeltrd |
|- ( N e. NN -> ( log ` ( ( N + 1 ) / N ) ) e. RR ) |
| 54 |
|
efle |
|- ( ( ( 1 / ( N + 1 ) ) e. RR /\ ( log ` ( ( N + 1 ) / N ) ) e. RR ) -> ( ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) <-> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 55 |
4 53 54
|
syl2anc |
|- ( N e. NN -> ( ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) <-> ( exp ` ( 1 / ( N + 1 ) ) ) <_ ( exp ` ( log ` ( ( N + 1 ) / N ) ) ) ) ) |
| 56 |
51 55
|
mpbird |
|- ( N e. NN -> ( 1 / ( N + 1 ) ) <_ ( log ` ( ( N + 1 ) / N ) ) ) |
| 57 |
56 52
|
breqtrd |
|- ( N e. NN -> ( 1 / ( N + 1 ) ) <_ ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) |
| 58 |
4 9 14 57
|
leadd2dd |
|- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( 1 / ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) ) |
| 59 |
|
id |
|- ( N e. NN -> N e. NN ) |
| 60 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 61 |
59 60
|
eleqtrdi |
|- ( N e. NN -> N e. ( ZZ>= ` 1 ) ) |
| 62 |
|
elfznn |
|- ( m e. ( 1 ... ( N + 1 ) ) -> m e. NN ) |
| 63 |
62
|
adantl |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> m e. NN ) |
| 64 |
63
|
nnrecred |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 / m ) e. RR ) |
| 65 |
64
|
recnd |
|- ( ( N e. NN /\ m e. ( 1 ... ( N + 1 ) ) ) -> ( 1 / m ) e. CC ) |
| 66 |
|
oveq2 |
|- ( m = ( N + 1 ) -> ( 1 / m ) = ( 1 / ( N + 1 ) ) ) |
| 67 |
61 65 66
|
fsump1 |
|- ( N e. NN -> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( 1 / ( N + 1 ) ) ) ) |
| 68 |
6
|
recnd |
|- ( N e. NN -> ( log ` ( N + 1 ) ) e. CC ) |
| 69 |
14
|
recnd |
|- ( N e. NN -> sum_ m e. ( 1 ... N ) ( 1 / m ) e. CC ) |
| 70 |
8
|
recnd |
|- ( N e. NN -> ( log ` N ) e. CC ) |
| 71 |
68 69 70
|
addsub12d |
|- ( N e. NN -> ( ( log ` ( N + 1 ) ) + ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( N + 1 ) ) - ( log ` N ) ) ) ) |
| 72 |
58 67 71
|
3brtr4d |
|- ( N e. NN -> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <_ ( ( log ` ( N + 1 ) ) + ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) ) |
| 73 |
|
fzfid |
|- ( N e. NN -> ( 1 ... ( N + 1 ) ) e. Fin ) |
| 74 |
73 64
|
fsumrecl |
|- ( N e. NN -> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) e. RR ) |
| 75 |
14 8
|
resubcld |
|- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. RR ) |
| 76 |
74 6 75
|
lesubadd2d |
|- ( N e. NN -> ( ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) <-> sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <_ ( ( log ` ( N + 1 ) ) + ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) ) ) |
| 77 |
72 76
|
mpbird |
|- ( N e. NN -> ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 78 |
|
oveq2 |
|- ( n = ( N + 1 ) -> ( 1 ... n ) = ( 1 ... ( N + 1 ) ) ) |
| 79 |
78
|
sumeq1d |
|- ( n = ( N + 1 ) -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) ) |
| 80 |
|
fveq2 |
|- ( n = ( N + 1 ) -> ( log ` n ) = ( log ` ( N + 1 ) ) ) |
| 81 |
79 80
|
oveq12d |
|- ( n = ( N + 1 ) -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 82 |
|
ovex |
|- ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. _V |
| 83 |
81 1 82
|
fvmpt |
|- ( ( N + 1 ) e. NN -> ( F ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 84 |
3 83
|
syl |
|- ( N e. NN -> ( F ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 85 |
|
oveq2 |
|- ( n = N -> ( 1 ... n ) = ( 1 ... N ) ) |
| 86 |
85
|
sumeq1d |
|- ( n = N -> sum_ m e. ( 1 ... n ) ( 1 / m ) = sum_ m e. ( 1 ... N ) ( 1 / m ) ) |
| 87 |
|
fveq2 |
|- ( n = N -> ( log ` n ) = ( log ` N ) ) |
| 88 |
86 87
|
oveq12d |
|- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` n ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 89 |
|
ovex |
|- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) e. _V |
| 90 |
88 1 89
|
fvmpt |
|- ( N e. NN -> ( F ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` N ) ) ) |
| 91 |
77 84 90
|
3brtr4d |
|- ( N e. NN -> ( F ` ( N + 1 ) ) <_ ( F ` N ) ) |
| 92 |
|
peano2nn |
|- ( ( N + 1 ) e. NN -> ( ( N + 1 ) + 1 ) e. NN ) |
| 93 |
3 92
|
syl |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) e. NN ) |
| 94 |
93
|
nnrpd |
|- ( N e. NN -> ( ( N + 1 ) + 1 ) e. RR+ ) |
| 95 |
94
|
relogcld |
|- ( N e. NN -> ( log ` ( ( N + 1 ) + 1 ) ) e. RR ) |
| 96 |
95 6
|
resubcld |
|- ( N e. NN -> ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) e. RR ) |
| 97 |
|
logdifbnd |
|- ( ( N + 1 ) e. RR+ -> ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) <_ ( 1 / ( N + 1 ) ) ) |
| 98 |
5 97
|
syl |
|- ( N e. NN -> ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) <_ ( 1 / ( N + 1 ) ) ) |
| 99 |
96 4 14 98
|
leadd2dd |
|- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) ) <_ ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( 1 / ( N + 1 ) ) ) ) |
| 100 |
95
|
recnd |
|- ( N e. NN -> ( log ` ( ( N + 1 ) + 1 ) ) e. CC ) |
| 101 |
69 68 100
|
subadd23d |
|- ( N e. NN -> ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) + ( ( log ` ( ( N + 1 ) + 1 ) ) - ( log ` ( N + 1 ) ) ) ) ) |
| 102 |
99 101 67
|
3brtr4d |
|- ( N e. NN -> ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) <_ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) ) |
| 103 |
14 6
|
resubcld |
|- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. RR ) |
| 104 |
|
leaddsub |
|- ( ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. RR /\ ( log ` ( ( N + 1 ) + 1 ) ) e. RR /\ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) e. RR ) -> ( ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) <_ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <-> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) ) |
| 105 |
103 95 74 104
|
syl3anc |
|- ( N e. NN -> ( ( ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) + ( log ` ( ( N + 1 ) + 1 ) ) ) <_ sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) <-> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) ) |
| 106 |
102 105
|
mpbid |
|- ( N e. NN -> ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) <_ ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 107 |
|
fvoveq1 |
|- ( n = N -> ( log ` ( n + 1 ) ) = ( log ` ( N + 1 ) ) ) |
| 108 |
86 107
|
oveq12d |
|- ( n = N -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 109 |
|
ovex |
|- ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) e. _V |
| 110 |
108 2 109
|
fvmpt |
|- ( N e. NN -> ( G ` N ) = ( sum_ m e. ( 1 ... N ) ( 1 / m ) - ( log ` ( N + 1 ) ) ) ) |
| 111 |
|
fvoveq1 |
|- ( n = ( N + 1 ) -> ( log ` ( n + 1 ) ) = ( log ` ( ( N + 1 ) + 1 ) ) ) |
| 112 |
79 111
|
oveq12d |
|- ( n = ( N + 1 ) -> ( sum_ m e. ( 1 ... n ) ( 1 / m ) - ( log ` ( n + 1 ) ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 113 |
|
ovex |
|- ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) e. _V |
| 114 |
112 2 113
|
fvmpt |
|- ( ( N + 1 ) e. NN -> ( G ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 115 |
3 114
|
syl |
|- ( N e. NN -> ( G ` ( N + 1 ) ) = ( sum_ m e. ( 1 ... ( N + 1 ) ) ( 1 / m ) - ( log ` ( ( N + 1 ) + 1 ) ) ) ) |
| 116 |
106 110 115
|
3brtr4d |
|- ( N e. NN -> ( G ` N ) <_ ( G ` ( N + 1 ) ) ) |
| 117 |
91 116
|
jca |
|- ( N e. NN -> ( ( F ` ( N + 1 ) ) <_ ( F ` N ) /\ ( G ` N ) <_ ( G ` ( N + 1 ) ) ) ) |