| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eflegeo.1 |
|- ( ph -> A e. RR ) |
| 2 |
|
eflegeo.2 |
|- ( ph -> 0 <_ A ) |
| 3 |
|
eflegeo.3 |
|- ( ph -> A < 1 ) |
| 4 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 5 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 6 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) |
| 7 |
6
|
eftval |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( A ^ k ) / ( ! ` k ) ) ) |
| 9 |
|
reeftcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
| 10 |
1 9
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) e. RR ) |
| 11 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
| 12 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
| 13 |
|
ovex |
|- ( A ^ k ) e. _V |
| 14 |
11 12 13
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 16 |
|
reexpcl |
|- ( ( A e. RR /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
| 17 |
1 16
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. RR ) |
| 18 |
|
faccl |
|- ( k e. NN0 -> ( ! ` k ) e. NN ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. NN ) |
| 20 |
19
|
nnred |
|- ( ( ph /\ k e. NN0 ) -> ( ! ` k ) e. RR ) |
| 21 |
1
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> A e. RR ) |
| 22 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 23 |
2
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ A ) |
| 24 |
21 22 23
|
expge0d |
|- ( ( ph /\ k e. NN0 ) -> 0 <_ ( A ^ k ) ) |
| 25 |
19
|
nnge1d |
|- ( ( ph /\ k e. NN0 ) -> 1 <_ ( ! ` k ) ) |
| 26 |
17 20 24 25
|
lemulge12d |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) |
| 27 |
19
|
nngt0d |
|- ( ( ph /\ k e. NN0 ) -> 0 < ( ! ` k ) ) |
| 28 |
|
ledivmul |
|- ( ( ( A ^ k ) e. RR /\ ( A ^ k ) e. RR /\ ( ( ! ` k ) e. RR /\ 0 < ( ! ` k ) ) ) -> ( ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) <-> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) ) |
| 29 |
17 17 20 27 28
|
syl112anc |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) <-> ( A ^ k ) <_ ( ( ! ` k ) x. ( A ^ k ) ) ) ) |
| 30 |
26 29
|
mpbird |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ^ k ) / ( ! ` k ) ) <_ ( A ^ k ) ) |
| 31 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 32 |
6
|
efcllem |
|- ( A e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 33 |
31 32
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( ( A ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 34 |
1 2
|
absidd |
|- ( ph -> ( abs ` A ) = A ) |
| 35 |
34 3
|
eqbrtrd |
|- ( ph -> ( abs ` A ) < 1 ) |
| 36 |
31 35 15
|
geolim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
| 37 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. _V |
| 38 |
|
ovex |
|- ( 1 / ( 1 - A ) ) e. _V |
| 39 |
37 38
|
breldm |
|- ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 40 |
36 39
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 41 |
4 5 8 10 15 17 30 33 40
|
isumle |
|- ( ph -> sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) <_ sum_ k e. NN0 ( A ^ k ) ) |
| 42 |
|
efval |
|- ( A e. CC -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
| 43 |
31 42
|
syl |
|- ( ph -> ( exp ` A ) = sum_ k e. NN0 ( ( A ^ k ) / ( ! ` k ) ) ) |
| 44 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 45 |
31 44
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 46 |
4 5 15 45 36
|
isumclim |
|- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
| 47 |
46
|
eqcomd |
|- ( ph -> ( 1 / ( 1 - A ) ) = sum_ k e. NN0 ( A ^ k ) ) |
| 48 |
41 43 47
|
3brtr4d |
|- ( ph -> ( exp ` A ) <_ ( 1 / ( 1 - A ) ) ) |