| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eflegeo.1 |
|
| 2 |
|
eflegeo.2 |
|
| 3 |
|
eflegeo.3 |
|
| 4 |
|
nn0uz |
|
| 5 |
|
0zd |
|
| 6 |
|
eqid |
|
| 7 |
6
|
eftval |
|
| 8 |
7
|
adantl |
|
| 9 |
|
reeftcl |
|
| 10 |
1 9
|
sylan |
|
| 11 |
|
oveq2 |
|
| 12 |
|
eqid |
|
| 13 |
|
ovex |
|
| 14 |
11 12 13
|
fvmpt |
|
| 15 |
14
|
adantl |
|
| 16 |
|
reexpcl |
|
| 17 |
1 16
|
sylan |
|
| 18 |
|
faccl |
|
| 19 |
18
|
adantl |
|
| 20 |
19
|
nnred |
|
| 21 |
1
|
adantr |
|
| 22 |
|
simpr |
|
| 23 |
2
|
adantr |
|
| 24 |
21 22 23
|
expge0d |
|
| 25 |
19
|
nnge1d |
|
| 26 |
17 20 24 25
|
lemulge12d |
|
| 27 |
19
|
nngt0d |
|
| 28 |
|
ledivmul |
|
| 29 |
17 17 20 27 28
|
syl112anc |
|
| 30 |
26 29
|
mpbird |
|
| 31 |
1
|
recnd |
|
| 32 |
6
|
efcllem |
|
| 33 |
31 32
|
syl |
|
| 34 |
1 2
|
absidd |
|
| 35 |
34 3
|
eqbrtrd |
|
| 36 |
31 35 15
|
geolim |
|
| 37 |
|
seqex |
|
| 38 |
|
ovex |
|
| 39 |
37 38
|
breldm |
|
| 40 |
36 39
|
syl |
|
| 41 |
4 5 8 10 15 17 30 33 40
|
isumle |
|
| 42 |
|
efval |
|
| 43 |
31 42
|
syl |
|
| 44 |
|
expcl |
|
| 45 |
31 44
|
sylan |
|
| 46 |
4 5 15 45 36
|
isumclim |
|
| 47 |
46
|
eqcomd |
|
| 48 |
41 43 47
|
3brtr4d |
|