| Step |
Hyp |
Ref |
Expression |
| 1 |
|
emcl.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ 𝑛 ) ) ) |
| 2 |
|
emcl.2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
| 3 |
|
emcl.3 |
⊢ 𝐻 = ( 𝑛 ∈ ℕ ↦ ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) |
| 4 |
|
emcl.4 |
⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) ) |
| 5 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... 𝑛 ) → 𝑚 ∈ ℕ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℕ ) |
| 7 |
6
|
nncnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℂ ) |
| 8 |
|
1cnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 1 ∈ ℂ ) |
| 9 |
6
|
nnne0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ≠ 0 ) |
| 10 |
7 8 7 9
|
divdird |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 + 1 ) / 𝑚 ) = ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) ) |
| 11 |
7 9
|
dividd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑚 / 𝑚 ) = 1 ) |
| 12 |
11
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 / 𝑚 ) + ( 1 / 𝑚 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 13 |
10 12
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝑚 + 1 ) / 𝑚 ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 14 |
13
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 15 |
|
peano2nn |
⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) |
| 16 |
6 15
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 17 |
16
|
nnrpd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
| 18 |
6
|
nnrpd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → 𝑚 ∈ ℝ+ ) |
| 19 |
17 18
|
relogdivd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( ( 𝑚 + 1 ) / 𝑚 ) ) = ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) ) |
| 20 |
14 19
|
eqtr3d |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) = ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) ) |
| 21 |
20
|
sumeq2dv |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝑚 → ( log ‘ 𝑥 ) = ( log ‘ 𝑚 ) ) |
| 23 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝑚 + 1 ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑥 = 1 → ( log ‘ 𝑥 ) = ( log ‘ 1 ) ) |
| 25 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑛 + 1 ) → ( log ‘ 𝑥 ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 26 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
| 27 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 28 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 29 |
27 28
|
eleqtrdi |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 30 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) → 𝑥 ∈ ℕ ) |
| 31 |
30
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℕ ) |
| 32 |
31
|
nnrpd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 33 |
32
|
relogcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 34 |
33
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ( 1 ... ( 𝑛 + 1 ) ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 35 |
22 23 24 25 26 29 34
|
telfsum2 |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( log ‘ ( 𝑚 + 1 ) ) − ( log ‘ 𝑚 ) ) = ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 1 ) ) ) |
| 36 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 37 |
36
|
oveq2i |
⊢ ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 1 ) ) = ( ( log ‘ ( 𝑛 + 1 ) ) − 0 ) |
| 38 |
27
|
nnrpd |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 39 |
38
|
relogcld |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 40 |
39
|
recnd |
⊢ ( 𝑛 ∈ ℕ → ( log ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 41 |
40
|
subid1d |
⊢ ( 𝑛 ∈ ℕ → ( ( log ‘ ( 𝑛 + 1 ) ) − 0 ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 42 |
37 41
|
eqtrid |
⊢ ( 𝑛 ∈ ℕ → ( ( log ‘ ( 𝑛 + 1 ) ) − ( log ‘ 1 ) ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 43 |
21 35 42
|
3eqtrd |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) = ( log ‘ ( 𝑛 + 1 ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) |
| 45 |
|
fzfid |
⊢ ( 𝑛 ∈ ℕ → ( 1 ... 𝑛 ) ∈ Fin ) |
| 46 |
6
|
nnrecred |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 47 |
46
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 48 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 49 |
18
|
rpreccld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 / 𝑚 ) ∈ ℝ+ ) |
| 50 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 1 / 𝑚 ) ∈ ℝ+ ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
| 51 |
48 49 50
|
sylancr |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 1 + ( 1 / 𝑚 ) ) ∈ ℝ+ ) |
| 52 |
51
|
relogcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℝ ) |
| 53 |
52
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ∈ ℂ ) |
| 54 |
45 47 53
|
fsumsub |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 55 |
|
oveq2 |
⊢ ( 𝑛 = 𝑚 → ( 1 / 𝑛 ) = ( 1 / 𝑚 ) ) |
| 56 |
55
|
oveq2d |
⊢ ( 𝑛 = 𝑚 → ( 1 + ( 1 / 𝑛 ) ) = ( 1 + ( 1 / 𝑚 ) ) ) |
| 57 |
56
|
fveq2d |
⊢ ( 𝑛 = 𝑚 → ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) = ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) |
| 58 |
55 57
|
oveq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 1 / 𝑛 ) − ( log ‘ ( 1 + ( 1 / 𝑛 ) ) ) ) = ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 59 |
|
ovex |
⊢ ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ∈ V |
| 60 |
58 4 59
|
fvmpt |
⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 61 |
6 60
|
syl |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( 𝑇 ‘ 𝑚 ) = ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ) |
| 62 |
|
id |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ ) |
| 63 |
62 28
|
eleqtrdi |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 64 |
46 52
|
resubcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ∈ ℝ ) |
| 65 |
64
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑚 ∈ ( 1 ... 𝑛 ) ) → ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) ∈ ℂ ) |
| 66 |
61 63 65
|
fsumser |
⊢ ( 𝑛 ∈ ℕ → Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( ( 1 / 𝑚 ) − ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 67 |
54 66
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( log ‘ ( 1 + ( 1 / 𝑚 ) ) ) ) = ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 68 |
44 67
|
eqtr3d |
⊢ ( 𝑛 ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) = ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 69 |
68
|
mpteq2ia |
⊢ ( 𝑛 ∈ ℕ ↦ ( Σ 𝑚 ∈ ( 1 ... 𝑛 ) ( 1 / 𝑚 ) − ( log ‘ ( 𝑛 + 1 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 70 |
|
1z |
⊢ 1 ∈ ℤ |
| 71 |
|
seqfn |
⊢ ( 1 ∈ ℤ → seq 1 ( + , 𝑇 ) Fn ( ℤ≥ ‘ 1 ) ) |
| 72 |
70 71
|
ax-mp |
⊢ seq 1 ( + , 𝑇 ) Fn ( ℤ≥ ‘ 1 ) |
| 73 |
28
|
fneq2i |
⊢ ( seq 1 ( + , 𝑇 ) Fn ℕ ↔ seq 1 ( + , 𝑇 ) Fn ( ℤ≥ ‘ 1 ) ) |
| 74 |
72 73
|
mpbir |
⊢ seq 1 ( + , 𝑇 ) Fn ℕ |
| 75 |
|
dffn5 |
⊢ ( seq 1 ( + , 𝑇 ) Fn ℕ ↔ seq 1 ( + , 𝑇 ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) ) |
| 76 |
74 75
|
mpbi |
⊢ seq 1 ( + , 𝑇 ) = ( 𝑛 ∈ ℕ ↦ ( seq 1 ( + , 𝑇 ) ‘ 𝑛 ) ) |
| 77 |
69 2 76
|
3eqtr4i |
⊢ 𝐺 = seq 1 ( + , 𝑇 ) |